期刊文献+
共找到1,448篇文章
< 1 2 73 >
每页显示 20 50 100
Lasing without inversion in a four-level diamond system
1
作者 高强 宋同强 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期243-249,共7页
We study the lasing without inversion in a four-level diamond configuration in the case of incoherent pumping field within the framework of the bare-state basis. With the strong fields limit, we obtain the approximate... We study the lasing without inversion in a four-level diamond configuration in the case of incoherent pumping field within the framework of the bare-state basis. With the strong fields limit, we obtain the approximate steady-state solution, and discuss the dependence of population distribution and system gain on probe detuning and auxiliary field Rabi frequency. 展开更多
关键词 lasing without inversion four-level diamond system cyclic transition
下载PDF
EFFECT OF NEGATIVE BIAS ON DIAMOND NUCLEATION IN MICROWAVE PLASMA ASSISTED CHEMICAL VAPOR DEPOSITION SYSTEM
2
作者 王建军 吕反修 +2 位作者 刘应锴 于文秀 佟玉梅 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1996年第1期16+12-16,共6页
Effect of direct current negative bias on diamond nucleation in microwave plasma assisted chemical vapor deposition system was discussed. The influence of the magnitude of negative bias value,bias duration and methane... Effect of direct current negative bias on diamond nucleation in microwave plasma assisted chemical vapor deposition system was discussed. The influence of the magnitude of negative bias value,bias duration and methane concentration in the gas mixture on nucleation density of diamond films was studied respectively. It is demonstrated that direct current negative bias can drastically enhance the diamond nucleation at a suitable value.Long bias duration and high methane concentration are helpful for diamond nucleation. 展开更多
关键词 diamond films NUCLEATION DC bias
下载PDF
Simulation and experiment analysis on thermal deformation of tool system in single-point diamond turning of aluminum alloy 被引量:4
3
作者 ZHANG Yuan-jing DONG Guo-jun ZHOU Ming 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2223-2229,共7页
The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cu... The aim of this work is to simulate thermal deformation of tool system and investigate the influence of cutting parameters on it in single-point diamond turning(SPDT) of aluminum alloy. The experiments with various cutting parameters were conducted. Cutting temperature was measured by FLIR A315 infrared thermal imager. Tool wear was measured by scanning electron microscope(SEM). The numerical model of heat flux considering tool wear generated in cutting zone was established. Then two-step finite element method(FEM) simulations matching the experimental conditions were carried out to simulate the thermal deformation. In addition, the tests of deformation of tool system were performed to verify previous simulation results. And then the influence of cutting parameters on thermal deformation was investigated. The results show that the temperature and thermal deformation from simulations agree well with the results from experiments in the same conditions. The maximum thermal deformation of tool reaches to 7 μm. The average flank wear width and cutting speed are the dominant factors affecting thermal deformation, and the effective way to decrease the thermal deformation of tool is to control the tool wear and the cutting speed. 展开更多
关键词 ultra-precision cutting tool wear diamond thermal deformation form accuracy
下载PDF
Effects of the electric field at the edge of a substrate to deposit a φ100 mm uniform diamond film in a 2.45 GHz MPCVD system 被引量:3
4
作者 Kang AN Shuai ZHANG +6 位作者 Siwu SHAO Jinlong LIU Junjun WEI Liangxian CHEN Yuting ZHENG Qing LIU Chengming LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第4期147-154,共8页
In this study,uniform diamond films with a diameter of 100 mm were deposited in a 15 kW/2.45 GHz ellipsoidal microwave plasma chemical vapour deposition system.A phenomenological model previously developed by our grou... In this study,uniform diamond films with a diameter of 100 mm were deposited in a 15 kW/2.45 GHz ellipsoidal microwave plasma chemical vapour deposition system.A phenomenological model previously developed by our group was used to simulate the distribution of the electric strength and electron density of plasma.Results indicate that the electric field in the cavity includes multiple modes,i.e.TM_(02) and TM_(03).When the gas pressure exceeds 10 kPa,the electron density of plasma increases and plasma volume decreases.A T-shaped substrate was developed to achieve uniform temperature,and the substrate was suspended in air fromφ70 to 100 mm,thus eliminating vertical heat dissipation.An edge electric field was added to the system after the introduction of the T-shaped substrate.Moreover,the plasma volume in this case was greater than that in the central electric field but smaller than that in the periphery electric field of the TM_(02) mode.This indicates that the electric field above and below the edge benefits the plasma volume rather than the periphery electric field of the TM_(02) mode.The quality,uniformity and surface morphology of the deposited diamond films were primarily investigated to maintain substrate temperature uniformity.When employing the improved substrate,the thickness unevenness of theφ100 mm diamond film decreased from 22%to 7%. 展开更多
关键词 MPCVD 2.45 GHz diamond film plasma simulation
下载PDF
Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi–C system 被引量:4
5
作者 Ming-Ming Guo Shang-Sheng Li +5 位作者 Mei-Hua Hu Tai-Chao Su Jun-Zuo Wang Guang-Jin Gao Yue You Yuan Nie 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期457-462,共6页
High-quality type IIa large diamond crystals are synthesized with Ti/Cu as nitrogen getter doped in an FeNi–C system at temperature ranging from 1230℃to 1380℃and at pressure 5.3–5.9 GPa by temperature gradient met... High-quality type IIa large diamond crystals are synthesized with Ti/Cu as nitrogen getter doped in an FeNi–C system at temperature ranging from 1230℃to 1380℃and at pressure 5.3–5.9 GPa by temperature gradient method.Different ratios of Ti/Cu are added to the Fe Ni–C system to investigate the best ratio for high-quality type IIa diamond.Then,the different content of nitrogen getter Ti/Cu(Ti:Cu=4:3)is added to this synthesis system to explore the effect on diamond growth.The macro and micro morphologies of synthesized diamonds with Ti/Cu added,whose nitrogen concentration is determined by Fourier transform infrared(FTIR),are analyzed by optical microscopy(OM)and scanning electron microscopy(SEM),respectively.It is found that the inclusions in the obtained crystals are minimal when the Ti/Cu ratio is 4:3.Furthermore,the temperature interval for diamond growth becomes narrower when using Ti as the nitrogen getter.Moreover,the lower edge of the synthesis temperature of type IIa diamond is 25℃higher than that of type Ib diamond.With the increase of the content of Ti/Cu(Ti:Cu=4:3),the color of the synthesized crystals changes from yellow and light yellow to colorless.When the Ti/Cu content is 1.7 wt%,the nitrogen concentration of the crystal is less than 1 ppm.The SEM results show that the synthesized crystals are mainly composed by(111)and(100)surfaces,including(311)surface,when the nitrogen getter is added into the synthesis system.At the same time,there are triangular pits and dendritic growth stripes on the crystal surface.This work will contribute to the further research and development of high-quality type IIa diamond. 展开更多
关键词 high temperature and high pressure temperature gradient method type IIa diamond
下载PDF
Energy consumption of electrooxidation systems with boron-doped diamond electrodes in the pulse current mode 被引量:2
6
作者 Jun-jun Wei Xu-hui Gao +2 位作者 Li-fu Hei Jawaid Askari Cheng-ming Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第1期106-112,共7页
A pulse current technique was conducted in a boron-doped diamond (BDD) anode system for electrochemical waste- water treatment. Due to the strong generation and weak absorption of hydroxyl radicals on the diamond su... A pulse current technique was conducted in a boron-doped diamond (BDD) anode system for electrochemical waste- water treatment. Due to the strong generation and weak absorption of hydroxyl radicals on the diamond surface, the BDD elec- trode possesses a powerful capability of electrochemical oxidation of organic compounds, especially in the pulse current mode. The influences of pulse current parameters such as current density, pulse duty cycle, and frequency were investigated in terms of chemical oxygen demand (COD) removal, average current efficiency, and specific energy consumption. The results demon- strated that the relatively high COD removal and low specific energy consumption were obtained simultaneously only if the current density or pulse duty cycle was adjusted to a reasonable value. Increasing the frequency slightly enhanced the COD re- moval and average current efficiency. A pulse-BDD anode system showed a stronger energy saving ability than a constant-BDD anode system when the electrochemical oxidation of phenol of the two systems was compared. The results prove that the pulse current technique is more cost-effective and more suitable for a BDD anode system for real wastewater treatment. A kinetic analysis was presented to explain the above results. 展开更多
关键词 diamond fihlls BORON doping electrochemical oxidation hydroxyl radicals energy consumption wastewater treat- ment
下载PDF
Fine Structural and Carbon Source Analysis for Diamond Crystal Growth using an Fe-Ni-C System at High Pressure and High Temperature 被引量:2
7
作者 FAN Xiao-Hong XU Bin +2 位作者 NIU Zhen ZHAI Tong-Guang TIAN Bin 《Chinese Physics Letters》 SCIE CAS CSCD 2012年第4期229-231,共3页
Diamond is synthesized in an Fe-Ni-C system at high pressure and high temperature,the C sp^(3) content profile through different thicknesses of interface between diamond and the catalyst film is measured by using elec... Diamond is synthesized in an Fe-Ni-C system at high pressure and high temperature,the C sp^(3) content profile through different thicknesses of interface between diamond and the catalyst film is measured by using electron energy loss spectroscopy.It is found that the Csp^(3) content varies from 87.33% to 78.15% when the measured position is located at the inner face near the diamond and then changes to 6 μm further away.Transmission electron microscope examinations show that there are different phases in the interface,such as Fe3C,γ-(Fe,Ni),and graphite,but the graphite phase diminishes gradually towards the inner face of the interface.These results profoundly indicate that the carbon atoms,required for diamond growth,could only come from the carbon-rich phase,Fe3C,but not directly from the graphite.It is possible that carbon atoms from the graphite in the interface first react with Fe atoms to produce carbide Fe3 C during diamond synthesis at high pressure and high temperature.The Fe3 C finally decomposes into carbon atoms with the sp^(3) electron state at the interface to form the diamond. 展开更多
关键词 SPECTROSCOPY CARBIDE diamond
下载PDF
Effect of FeS doping on large diamond synthesis in FeNi-C system 被引量:2
8
作者 Jian-Kang Wang Shang-Sheng Li +9 位作者 Quan-Wei Jiang Yan-Ling Song Kun-Peng Yu Fei Han Tai-Chao Su Mei-Hua Hu Qiang Hu Hong-An Ma Xiao-Peng Jia ttong-Yu Xiao 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期572-577,共6页
The large single-crystal diamond with FeS doping along the (111) face is synthesized from the FeNi-C system by the temperature gradient method (TGM) under high-pressure and high-temperature (HPHT). the effects o... The large single-crystal diamond with FeS doping along the (111) face is synthesized from the FeNi-C system by the temperature gradient method (TGM) under high-pressure and high-temperature (HPHT). the effects of different FeS additive content on the shape, color, and quality of diamond are investigated. It is found that the (111) face of diamond is dominated and the (100) face of diamond disappears gradually with the increase of the FeS content. At the same time, the color of the diamond crystal changes from light yellow to gray-green and even gray-yellow. The stripes and pits corrosion on the diamond surface are observed to turn worse. The effects of FeS doping on the shape and surface morphology of diamond crystal are explained by the number of hang bonds in different surfaces of diamond. It can be shown from the test results of the Fourier transform infrared (FTIR) spectrum that there exists an S element in the obtained diamond. The N element content values in different additive amounts of diamond are calculated. The XPS spectrum results demonstrate that our obtained diamond contains S elements that exist in S-C and S-C-O forms in a diamond lattice. This work contributes to the further understanding and research of FeS-doped large single-crystal diamond characterization. 展开更多
关键词 HPHT large single-crystal diamond FeS doping
下载PDF
OES study of the gas phase during diamond films deposition in high power DC arc plasma jet CVD system 被引量:2
9
作者 周祖源 陈广超 +1 位作者 唐伟忠 吕反修 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第5期980-984,共5页
This paper used optical emission spectroscopy (OES) to study the gas phase in high power DC arc plasma jet chemical vapour deposition (CVD) during diamond films growth processes. The results show that all the depo... This paper used optical emission spectroscopy (OES) to study the gas phase in high power DC arc plasma jet chemical vapour deposition (CVD) during diamond films growth processes. The results show that all the deposition parameters (methane concentration, substrate temperature, gas flow rate and ratio of H2/Ar) could strongly influence the gas phase. C2 is found to be the most sensitive radical to deposition parameters among the radicals in gas phase. Spatially resolved OES implies that a relative high concentration of atomic H exists near the substrate surface, which is beneficial for diamond film growth. The relatively high concentrations of C2 and CH are correlated with high deposition rate of diamond. In our high deposition rate system, C2 is presumed to be the main growth radical, and CH is also believed to contribute the diamond deposition. 展开更多
关键词 gas phase OES diamond film high power DC arc plasma jet CVD
下载PDF
Effects of FeNi-phosphorus-carbon system on crystal growth of diamond under high pressure and high temperature conditions 被引量:2
10
作者 胡美华 毕宁 +5 位作者 李尚升 宿太超 周爱国 胡强 贾晓鹏 马红安 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期398-401,共4页
This paper reports the crystal growth of diamond from the Fe Ni–Carbon system with additive phosphorus at high pressures and high temperatures of 5.4–5.8 GPa and 1280–1360°C. Attributed to the presence of addi... This paper reports the crystal growth of diamond from the Fe Ni–Carbon system with additive phosphorus at high pressures and high temperatures of 5.4–5.8 GPa and 1280–1360°C. Attributed to the presence of additive phosphorus,the pressure and temperature condition, morphology, and color of diamond crystals change obviously. The pressure and temperature condition of diamond growth increases evidently with the increase of additive phosphorus content and results in the moving up of the V-shape region. The surfaces of the diamonds also become coarse as the additive phosphorus added in the growth system. Raman spectra indicate that diamonds grown from the Fe Ni-phosphorus-carbon system have more crystal defects and impurities. This work provides a new way to enrich the doping of diamond and improve the experimental exploration for future material applications. 展开更多
关键词 diamond high pressure and high temperature additive phosphorus
下载PDF
MINITYPE MACHINING SYSTEM FOR DIAMOND LAPPING & POLISHING BY USING BRUSHLESS DIRECT CURRENT MOTOR AS PRECISE SPINDLE 被引量:1
11
作者 FU Huinan CHEN Dongsheng ZHAO Yong LIN Binquan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期27-30,共4页
A minitype precise spindle system which can machine precisely and stably in the process of diamond lapping and polishing is designed. In such minitype spindle system, the brushless DC spindle motor is used to drive th... A minitype precise spindle system which can machine precisely and stably in the process of diamond lapping and polishing is designed. In such minitype spindle system, the brushless DC spindle motor is used to drive the lapping finish table, which is built with fluid dynamic bearings. Some measures have been taken to make the lapping system dynamic balance, and a servo controller which can adjust the speed of motor from 1200 r/min to 5400 r/min is designed. Experiments show that the spindle system is reliable and stable for diamond polishing, and the detection results by atomic force microscope(AFM) show that the surfaces of diamond edge's Ra is 6.725 nm and whole diamond average Ra is 3.25 nm. 展开更多
关键词 diamond Lapping polishing Spindle system
下载PDF
Preparation and characterization of ultrananocrystalline diamond films in H_2/Ar/CH_4 gas mixtures system with novel filament structure 被引量:1
12
作者 丰杰 李莎莎 +6 位作者 罗浩 魏秋平 王兵 李建国 胡东平 梅军 余志明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4097-4104,共8页
Diamond films were prepared by hot filament chemical vapor deposition(HFCVD) in a gas mixtures system of methane, argon and hydrogen. The composition and morphology in different deposition pressures and filament struc... Diamond films were prepared by hot filament chemical vapor deposition(HFCVD) in a gas mixtures system of methane, argon and hydrogen. The composition and morphology in different deposition pressures and filament structures were investigated, as well as the friction and wear-resistant properties. The sp3-bonded content was measured and nano-mechanics properties were also tested. Results of atomic force microscopy and X-ray photoelectron spectroscopy show that the diamond films whose surface roughness is less than 10 nm and sp3-bonded content is greater than 70% can be prepared by bistratal filament structure with optimized proportion of Ar. It is also shown that the friction coefficient of diamond films is 0.13 and its wear-resistant property is excellent. Nano-mechanics of films shows that its elastic modulus is up to 650 MPa and hardness can reach higher than 60 GPa. The diamond films with excellent performance have a broad application prospect in microelectromechanical systems(MEMS). 展开更多
关键词 ultrananocrystalline diamond HOT FILAMENT CHEMICAL
下载PDF
Large single crystal diamond grown in FeNiMnCo-S-C system under high pressure and high temperature conditions 被引量:6
13
作者 张贺 李尚升 +4 位作者 宿太超 胡美华 李光辉 马红安 贾晓鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第11期588-593,共6页
Large diamonds have successfully been synthesized from FeNiMnCo-S-C system at temperatures of 1255-1393 ℃and pressures of 5.3-5.5 GPa.Because of the presence of sulfur additive,the morphology and color of the large d... Large diamonds have successfully been synthesized from FeNiMnCo-S-C system at temperatures of 1255-1393 ℃and pressures of 5.3-5.5 GPa.Because of the presence of sulfur additive,the morphology and color of the large diamond crystals change obviously.The content and shape of inclusions change with increasing sulfur additive.It is found that the pressure and temperature conditions required for the synthesis decrease to some extent with the increase of S additive,which results in left down of the V-shape region.The Raman spectra show that the introduction of additive sulfur reduces the quality of the large diamond crystals.The x-ray photoelectron spectroscopy(XPS) spectra show the presence of S in the diamonds.Furthermore,the electrical properties of the large diamond crystals are tested by a four-point probe and the Hall effect method.When sulfur in the cell of diamond is up to 4.0 wt.%,the resistance of the diamond is 9.628×105 Ω·cm.It is shown that the large single crystal samples are n type semiconductors.This work is helpful for the further research and application of sulfur-doped semiconductor large diamond. 展开更多
关键词 diamond additive photoelectron sulfur doping morphol graphite incorporated attributed inclusion
下载PDF
Industrial diamonds grown in Ni_(70)Mn_(25)Co_5-graphite-sulfur system under HPHT 被引量:1
14
作者 周林 贾晓鹏 +2 位作者 马红安 郑友进 李彦涛 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第1期333-338,共6页
This paper reports that diamond single crystals were synthesized from sulfur-added Ni70Mn25Co5+C system under high pressure and high temperature (HPHT). It was found that additive sulfur had inhibited the nucleatio... This paper reports that diamond single crystals were synthesized from sulfur-added Ni70Mn25Co5+C system under high pressure and high temperature (HPHT). It was found that additive sulfur had inhibited the nucleation and growth of diamond to some extent. X-ray diffraction of the collected sample indicated that under the synthesis conditions, a new compound MnS had been formed through the reaction of additive sulfur with manganese in the catalyst. The MnS has a fcc structure, and its average crystal size was about 30 nm. By scanning electron microscope, the {111} surface of diamond was found to be flat, while there was usually a large depression on the central region of {100}. Further observation showed that there were many small upside-down pyramidal pits in the expression. The results of x-ray photoelectron spectroscopy shows that MnS can only be detected in the depression in the range of detection precision. It was inferred that MnS had been dissolved in the melted alloy during the growth experiment, and precipitated in the sequent quenching process. 展开更多
关键词 SULFUR diamond MORPHOLOGY MNS
下载PDF
Diamond growth in a high temperature and high pressure Fe–Ni–C–Si system:Effect of synthesis pressure 被引量:1
15
作者 刘杨 王志文 +5 位作者 李博维 赵洪宇 王胜学 陈良超 马红安 贾晓鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期602-608,共7页
Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work re... Pressure is one of the necessary conditions for diamond growth.Exploring the influence of pressure on growth changes in silicon-doped diamonds is of great value for the production of high-quality diamonds.This work reports the morphology,impurity content and crystal quality characteristics of silicon-doped diamond crystals synthesized under different pressures.Fourier transform infrared spectroscopy shows that with the increase of pressure,the nitrogen content in the C-center inside the diamond crystal decreases.X-ray photoelectron spectroscopy test results show the presence of silicon in the diamond crystals synthesized by adding silicon powder.Raman spectroscopy data shows that the increase in pressure in the Fe-Ni-C-Si system shifts the Raman peak of diamonds from 1331.18 cm^(-1)to 1331.25 cm^(-1),resulting in a decrease in internal stress in the crystal.The half-peak width decreased from 5.41 cm^(-1)to 5.26 cm^(-1),and the crystallinity of the silicon-doped diamond crystals improved,resulting in improved quality.This work provides valuable data that can provide a reference for the synthesis of high-quality silicon-doped diamonds. 展开更多
关键词 silicon-doped diamond crystal quality pressure effect nitrogen content
下载PDF
Synthesis of N-type semiconductor diamonds with sulfur,boron co-doping in FeNiMnCo-C system at high pressure and high temperature 被引量:4
16
作者 张贺 李尚升 +4 位作者 宿太超 胡美华 马红安 贾晓鹏 李勇 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第5期392-397,共6页
A series of diamonds with boron and sulfur co-doping were synthesized in the Fe Ni Mn Co-C system by temperature gradient growth(TGG) under high pressure and high temperature(HPHT). Because of differences in addit... A series of diamonds with boron and sulfur co-doping were synthesized in the Fe Ni Mn Co-C system by temperature gradient growth(TGG) under high pressure and high temperature(HPHT). Because of differences in additives, the resulting diamond crystals were colorless, blue-black, or yellow. Their morphologies were slab, tower, or minaret-like. Analysis of the x-ray photoelectron spectra(XPS) of these diamonds shows the presence of B, S, and N in samples from which N was not eliminated. But only the B dopant was assuredly incorporated in the samples from which N was eliminated. Resistivity and Hall mobility were 8.510 Ω·cm and 760.870 cm^2/V·s, respectively, for a P-type diamond sample from which nitrogen was eliminated. Correspondingly, resistivity and Hall mobility were 4.211×10^5 Ω·cm and 76.300 cmΩ2/V·s for an N-type diamond sample from which nitrogen was not eliminated. Large N-type diamonds of type Ib with B–S doping were acquired. 展开更多
关键词 boron diamond eliminated doping photoelectron additives incorporated resistivity tower sulfur
下载PDF
FABRICATION OF DIAMOND TUBES IN BIAS-ENHANCED HOT-FILAMENT CHEMICAL VAPOR DEPOSITION SYSTEM 被引量:1
17
作者 CHEN Ming MA Yuping XIANG Daohui SUN Fanghong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期24-26,共3页
Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arra... Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arranged is investigated.The self-supported diamond tubes are obtained by etching away the tungsten substrates.The quality of the diamond film before and after the removal of substrates is observed by scanning electron microscope(SEM)and Raman spectrum.The results show that the cylindrical diamond tubes with good quality and uniform thickness are obtained on tungsten wires by using bias enhanced hot filament CVD.The compressive stress in diamond film formed during the deposition is released after the substrate etches away by mixture of H2O2 and NH4 OH.There is no residual stress in diamond tube after substrate removal. 展开更多
关键词 diamond tube Hot-filament chemical vapor deposition Fabrication High quality
下载PDF
Synthesis of diamonds in Fe-C systems using nitrogen and hydrogen co-doped impurities under HPHT 被引量:1
18
作者 孙士帅 徐智慧 +2 位作者 崔雯 贾晓鹏 马红安 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期467-470,共4页
In this study, we investigate the effect of nitrogen and hydrogen impurities on colors, morphologies, impurity structures and synthesis conditions of diamond crystals in Fe–C systems with C3N6H6 additives at pressure... In this study, we investigate the effect of nitrogen and hydrogen impurities on colors, morphologies, impurity structures and synthesis conditions of diamond crystals in Fe–C systems with C3N6H6 additives at pressures in the range 5.0–6.5 GPa and temperatures of 1400–1700℃ in detail. Our results reveal that the octahedron diamond nucleation in a Fe–C system is evidently inhibited by co-doped N–H elements, thereby resulting in the increase of minimum pressure and temperature of diamond synthesis by spontaneous nucleation. The octahedron diamond crystals synthesized from a pure Fe–C system are colorless, while they become green in the system with C3N6H6 additive. The surface defects of diamond will deteriorate when the nitrogen and hydrogen atoms simultaneously incorporate in the diamond growth environment in the Fe–C system. We believe that this study will provide some important information and be beneficial for the deep understanding of the crystallization of diamonds from different component systems. 展开更多
关键词 high pressure and high temperature diamond N/H impurity catalyst/solvent
下载PDF
Revealing the atomic mechanism of diamond–iron interfacial reaction 被引量:1
19
作者 Yalun Ku Kun Xu +6 位作者 Longbin Yan Kuikui Zhang Dongsheng Song Xing Li Shunfang Li Shaobo Cheng Chongxin Shan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期255-263,共9页
Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous ... Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous materials,which significantly affects the performance of diamond-based devices.Herein,combing experiments and theoretical calculations,taking diamond–iron(Fe)interface as a prototype,the counter-diffusion mechanism of Fe/carbon atoms has been established.Surprisingly,it is identified that Fe and diamond first form a coherent interface,and then Fe atoms diffuse into diamond and prefer the carbon vacancies sites.Meanwhile,the relaxed carbon atoms diffuse into the Fe lattice,forming Fe_(3)C.Moreover,graphite is observed at the Fe_(3)C surface when Fe_(3)C is over-saturated by carbon atoms.The present findings are expected to offer new insights into the atomic mechanism for diamondferrous material's interfacial reactions,benefiting diamond-based device applications. 展开更多
关键词 coherent interface counter-diffusion diamond IRON phase transition
下载PDF
Entrapment of Inclusions in Diamond Crystals Grown from Fe-Ni-C System
20
作者 Yuxian LIU, Limei XIAO and Longwei YINCollege of Materials Science and Engineering, Shandong University, Jinan 250061, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第2期171-172,共2页
Diamond single crystals grown from Fe-Ni-C system at high temperature-high pressure (HPHT) usually contain inclusions related to the metallic catalyst. During the diamond growth, the metallic inclusions are trapped by... Diamond single crystals grown from Fe-Ni-C system at high temperature-high pressure (HPHT) usually contain inclusions related to the metallic catalyst. During the diamond growth, the metallic inclusions are trapped by the growth front or are formed through reaction between the contaminants trapped in the diamond. In the present paper, the metallic inclusions related to the catalyst were systematically examined by transmission electron microscopy (TEM). The chemical composition and crystal structure of the metallic inclusions were for the first time determined by selected area electron diffraction pattern (SADP) combined with energy dispersive X-ray spectrometry (EDS). It is shown that the inclusions are mainly composed of orthorhombic FeSi2, fcc (FeNi)23C6, and orthorhombic Fe3C, hexagonal Ni3C. 展开更多
关键词 Synthetic diamond Fe-Ni-C system INCLUSION Transmission electron microscopy
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部