With the increasing use of difficult-to-machine materials in aerospace applications,machining requirements are becoming ever more rigorous.However,traditional single-point diamond turning(SPDT)can cause surface damage...With the increasing use of difficult-to-machine materials in aerospace applications,machining requirements are becoming ever more rigorous.However,traditional single-point diamond turning(SPDT)can cause surface damage and tool wear.Thus,it is difficult for SPDT to meet the processing requirements,and it has significant limitations.Research indicates that supplementing SPDT with unconventional techniques can,importantly,solve problems due to the high cutting forces and poor surface quality for difficult-to-machine materials.This paper first introduces SPDT and reviews research into unconventional techniques for use with SPDT.The machining mechanism is discussed,and the main advantages and disadvantages of various methods are investigated.Second,hybrid SPDT is briefly described,which encompasses ultrasonic-vibration magnetic-field SPDT,ultrasonic-vibration laser SPDT,and ultrasonic-vibration cold-plasma SPDT.Compared with the traditional SPDT method,hybrid SPDT produces a better optical surface quality.The current status of research into unconventional techniques to supplement SPDT is then summarized.Finally,future development trends and the application prospects of unconventional assisted SPDT are discussed.展开更多
A new tool force model to be presented is based upon process geometry and thecharacteristics of the force system, in which the forces acting on the tool rake face, the cuttingedge rounding and the clearance face have ...A new tool force model to be presented is based upon process geometry and thecharacteristics of the force system, in which the forces acting on the tool rake face, the cuttingedge rounding and the clearance face have been considered, and the size effect is accountable forthe new model. It is desired that the model can be well applicable to conventional diamond turningand the model may be employed as a tool in the design of diamond tools. This approach is quitedifferent from traditional investigations primarily based on empirical studies. As the depth of cutbecomes the same order as the rounded cutting edge radius, sliding along the clearance face due toelastic recovery of workpiece material and plowing due to the rounded cutting edge may becomeimportant in micro-machining, the forces acting on the cutting edge rounding and the clearance facecan not be neglected. For this reason, it is very important to understand the influence of someparameters on tool forces and develop a model of the relationship between them.展开更多
With the increasing market demand for optical complex surface parts,the application of multi-axis ultraprecision single-point diamond turning is increasing.A tool path generation method is very important to decrease m...With the increasing market demand for optical complex surface parts,the application of multi-axis ultraprecision single-point diamond turning is increasing.A tool path generation method is very important to decrease manufacturing time,enhance surface quality,and reduce cost.Compared with the tool path generation of the traditional multi-axis milling,that of the ultra-precision single-point diamond turning requires higher calculation accuracy and efficiency.This paper reviews the tool path generation of ultra-precision diamond turning,considering several key issues:cutter location(CL)points calculation,the topological form of tool path,interpolation mode,and G code optimization.展开更多
A fast tool servo (FTS) system is developed for the fabrication of non-rotationally symmetric micro-structured surfaces using single-point diamond turning machines.The constructed FTS employs a piezoelectric tube actu...A fast tool servo (FTS) system is developed for the fabrication of non-rotationally symmetric micro-structured surfaces using single-point diamond turning machines.The constructed FTS employs a piezoelectric tube actuator (PZT) to actuate the diamond tool and a capacitive probe as the feedback sensor.To compensate the inherent nonlinear hysteresis behavior of the piezoelectric actuator,Proportional Integral (PI) feedback control is implemented.Besides,a feed-forward control based on a simple feed-forward predictor has been added to achieve better tracking performance.Experimental results indicate that error motions in the performance of the system caused by hysteresis can be reduced greatly and the micro-structured surface is successfully fabricated by implementing the FTS.展开更多
Diamond turning based on a fast tool servo(FTS)is widely used in freeform optics fabrication due to its high accuracy and machining efficiency.As a new trend,recently developed high-frequency and long-stroke FTS units...Diamond turning based on a fast tool servo(FTS)is widely used in freeform optics fabrication due to its high accuracy and machining efficiency.As a new trend,recently developed high-frequency and long-stroke FTS units are independently driven by a separate control system from the machine tool controller.However,the tool path generation strategy for the independently controlled FTS is far from complete.This study aims to establish methods for optimizing tool path for the independent control FTS to reduce form errors in a single step of machining.Different from the conventional integrated FTS control system,where control points are distributed in a spiral pattern,in this study,the tool path for the independent FTS controller is generated by the ring method and the mesh method,respectively.The machined surface profile is predicted by simulation and the parameters for the control point generation are optimized by minimizing the deviation between the predicted and the designed surfaces.To demonstrate the feasibility of the proposed tool path generation strategies,cutting tests of a two-dimensional sinewave and a micro-lens array were conducted and the results were compared.As a result,after tool path optimization,the peak-to-valley form error of the machined surface was reduced from 429 nm to 56 nm for the two-dimensional sinewave by using the ring method,and from 191 nm to 103 nm for the micro-lens array by using the mesh method,respectively.展开更多
Using general commercial software, a coupled thermo-mechanical plane strain larger deformation orthogonal cutting model is developed on the basis of updated Lagrangian formulation in this paper. The workpiece is oxyge...Using general commercial software, a coupled thermo-mechanical plane strain larger deformation orthogonal cutting model is developed on the basis of updated Lagrangian formulation in this paper. The workpiece is oxygen free high conductivity copper (OFHC copper), its flow stress is considered as a function of strain, strain rate and temperature to reflect its realistic changes in physical properties. In order to take into account the cutting edge radius effects of the single crystal diamond tool, rezoning technology is introduced into this simulation model. Diamond turning process is simulated from the initial stage to the steady stage of chip formation, and the distribution of temperature, equivalent stress, residual stress, strain rate and shear angle are obtained. The simulated principal force is compared with published experiment data and they are found to be in good agreement with each other, but poor for thrust force due to no consideration of elastic recovery for machined surface in the elastic-plastic material model.展开更多
A surface roughness model utilizing regression analysis method is developedfor predicting roughness of ultra-precision machined surface with a single crystal diamond tool. Theeffects of the main variables, such as cut...A surface roughness model utilizing regression analysis method is developedfor predicting roughness of ultra-precision machined surface with a single crystal diamond tool. Theeffects of the main variables, such as cutting speed, feed, and depth of cut on surface roughnessare also analyzed in diamond turning aluminum alloy. In order to predict the optimum cuttingconditions during process planning. A lot of experimental results show that the model can predictthe surface roughness effectively under a certain cutting conditions.展开更多
In this paper,molecular dynamic(MD)simulation was adopted to study the ductile response of single-crystal GaAs during single-point diamond turning(SPDT).The variations of cutting temperature,coordination number,and cu...In this paper,molecular dynamic(MD)simulation was adopted to study the ductile response of single-crystal GaAs during single-point diamond turning(SPDT).The variations of cutting temperature,coordination number,and cutting forces were revealed through MD simulations.SPDT experiment was also carried out to qualitatively validate MD simulation model from the aspects of normal cutting force.The simulation results show that the fundamental reason for ductile response of GaAs during SPDT is phase transition from a perfect zinc blende structure(GaAs-I)to a rock-salt structure(GaAs-II)under high pressure.Finally,a strong anisotropic machinability of GaAs was also found through MD simulations.展开更多
Polycrystalline materials are extensively employed in industry.Its surface roughness significantly affects the working performance.Material defects,particularly grain boundaries,have a great impact on the achieved sur...Polycrystalline materials are extensively employed in industry.Its surface roughness significantly affects the working performance.Material defects,particularly grain boundaries,have a great impact on the achieved surface roughness of polycrystalline materials.However,it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods.In this work,a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed.The kinematic–dynamic roughness component in relation to the tool profile duplication effect,work material plastic side flow,relative vibration between the diamond tool and workpiece,etc,is theoretically calculated.The material-defect roughness component is modeled with a cascade forward neural network.In the neural network,the ratio of maximum undeformed chip thickness to cutting edge radius RT S,work material properties(misorientation angle θ_(g) and grain size d_(g)),and spindle rotation speed n s are configured as input variables.The material-defect roughness component is set as the output variable.To validate the developed model,polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools.Compared with the previously developed model,obvious improvement in the prediction accuracy is observed with this hybrid prediction model.Based on this model,the influences of different factors on the surface roughness of polycrystalline materials are discussed.The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed.Two fracture modes,including transcrystalline and intercrystalline fractures at different RTS values,are observed.Meanwhile,optimal processing parameters are obtained with a simulated annealing algorithm.Cutting experiments are performed with the optimal parameters,and a flat surface finish with Sa 1.314 nm is finally achieved.The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning.展开更多
To improve the efficiency and consistency of machined microlens array using single-point diamond turning technology,a theoretical model of surface form error is proposed in this paper.Then,a compensation method for th...To improve the efficiency and consistency of machined microlens array using single-point diamond turning technology,a theoretical model of surface form error is proposed in this paper.Then,a compensation method for this model is studied.In the proposed tool equivalent tilt angle model,the microlens array is regarded as a freeform surface.The corresponding curvature radius of the surface at each cutting point along the cutting direction is calculated by establishing a slow slide servo cutting model.In the spatial form error model,the assumption is that surface form error has a linear relationship with z-axis maximum speed vz.An empirical linear equation is obtained and verified,with a maximum deviation of 0.4μm.Then,after machining,the surface form error is measured and processed using on-machine measurement.The theoretical and measured surface form errors are consistent.The surface form error is compensated in the machining program.The peak-to-valley value is reduced from 5.4 to 0.6μm after compensation.Findings show that the single-point diamond turning and compensation method for the microlens array presented in this paper can predict the surface form error and significantly improve machining accuracy and consistency.展开更多
Single-point diamond turning (SPDT) is widely used in the machining of infrared materials and metal-based mirrors. Diamond tips can scratch material, replicate the shape of the tip, and create annular turning marks on...Single-point diamond turning (SPDT) is widely used in the machining of infrared materials and metal-based mirrors. Diamond tips can scratch material, replicate the shape of the tip, and create annular turning marks on optical surfaces, which can have unpredictable adverse effects on imaging. In order to predict the effect of turning marks diffraction on the degradation of imaging quality, a model of the influence of SPDT processing parameters on the reduction of system imaging MTF under the influence of ideal grating turning marks diffraction was established. The results show that the depth of the turning mark will lead to the decline of MTF, especially the low frequency information. Finally, a method is proposed to reduce the effect of turning marks diffraction through changing the processing parameters. .展开更多
nm roughness value of silicon surface by diamond turning is obtained firstly and three novel techniques are proposed. The surface integrity is studied in detail by using atomic force microscope, scanning electron micr...nm roughness value of silicon surface by diamond turning is obtained firstly and three novel techniques are proposed. The surface integrity is studied in detail by using atomic force microscope, scanning electron microscope, and stylus surface instrument. The diamond tool sharpness has a considerable influence on the machined surface, therefore a novel technique—brightness modulation for measuring accurately the edge of the cutter is proposed. Mirror surfaces are assessed by another novel technique—a measure of their reflectivity. A third technique, single grit diamond machining is carried out. It supplies a experimental evidence for verifying the obtained high quality turned surfaces.展开更多
The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment.Most active vibration-isolation systems(AVIS)have been developed based on static loads.When ...The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment.Most active vibration-isolation systems(AVIS)have been developed based on static loads.When a vibration-isolation load changes dynamically during ultra-precision turning lathe machining,the system parameters change,and the efficiency of the active vibration-isolation system based on the traditional control strategy deteriorates.To solve this problem,this paper proposes a vibration-isolation control strategy based on a genetic algorithm-back propagation neural network-PID control(GA-BP-PID),which can automatically adjust the control parameters according to the machining conditions.Vibration-isolation simulations and experiments based on passive vibration isolation,a PID algorithm,and the GA-BP-PID algorithm under dynamic load machining conditions were conducted.The experimental results demonstrated that the active vibration-isolation control strategy designed in this study could effectively attenuate vibration disturbances in the external environment under dynamic load conditions.This design is reasonable and feasible.展开更多
Polycrystalline tin is an ideal excitation material for extreme ultraviolet light sources.However,the existence of grain boundary(GB)limits the surface roughness of polycrystalline tin after single-point diamond turni...Polycrystalline tin is an ideal excitation material for extreme ultraviolet light sources.However,the existence of grain boundary(GB)limits the surface roughness of polycrystalline tin after single-point diamond turning(SPDT).In this work,a novel method termed inductively coupled plasma(ICP)-assisted cutting was developed for the sub-nanometer finishing of polycrystalline tin.The relationship between ICP power,processing time,and modification depth was established by thermodynamic simulation,and the fitted heat transfer coefficient of polycrystalline tin was 540 W/(m2·K).The effects of large-thermal-gradient ICP treatment on the microstructure of polycrystalline tin were studied.After 0.9 kW ICP processing for 3.0 s,corresponding to the temperature gradient of 0.30 K/μm,the grain size of polycrystalline tin was expanded from a size of approximately 20-80μm to a millimeter scale.The Taguchi method was used to investigate the effects of rotational speed,depth of cut,and feed rate on SPDT.Experiments conducted based on the ICP system indicated that the plasma-assisted cutting method promoted the reduction of the influence of GB steps on the finishing of polycrystalline tin,thereby achieving a surface finish from 8.53 to 0.80 nm in Sa.The results of residual stress release demonstrated that the residual stress of plasma-assisted turning processing after 504 h stress release was 10.7 MPa,while that of the turning process without the ICP treatment was 41.6 MPa.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52175431)the Natural Science Foundation of Tianjin of China(Grant No.22JCZDJC00730)the Scientific Research Project of Tianjin Municipal Education Commission(Grant No.2022ZD021).
文摘With the increasing use of difficult-to-machine materials in aerospace applications,machining requirements are becoming ever more rigorous.However,traditional single-point diamond turning(SPDT)can cause surface damage and tool wear.Thus,it is difficult for SPDT to meet the processing requirements,and it has significant limitations.Research indicates that supplementing SPDT with unconventional techniques can,importantly,solve problems due to the high cutting forces and poor surface quality for difficult-to-machine materials.This paper first introduces SPDT and reviews research into unconventional techniques for use with SPDT.The machining mechanism is discussed,and the main advantages and disadvantages of various methods are investigated.Second,hybrid SPDT is briefly described,which encompasses ultrasonic-vibration magnetic-field SPDT,ultrasonic-vibration laser SPDT,and ultrasonic-vibration cold-plasma SPDT.Compared with the traditional SPDT method,hybrid SPDT produces a better optical surface quality.The current status of research into unconventional techniques to supplement SPDT is then summarized.Finally,future development trends and the application prospects of unconventional assisted SPDT are discussed.
基金This project is supported by National Natural Science Foundation of China (No.50175022)National Aerospace Support Foundation of China(No.0223HIT07).
文摘A new tool force model to be presented is based upon process geometry and thecharacteristics of the force system, in which the forces acting on the tool rake face, the cuttingedge rounding and the clearance face have been considered, and the size effect is accountable forthe new model. It is desired that the model can be well applicable to conventional diamond turningand the model may be employed as a tool in the design of diamond tools. This approach is quitedifferent from traditional investigations primarily based on empirical studies. As the depth of cutbecomes the same order as the rounded cutting edge radius, sliding along the clearance face due toelastic recovery of workpiece material and plowing due to the rounded cutting edge may becomeimportant in micro-machining, the forces acting on the cutting edge rounding and the clearance facecan not be neglected. For this reason, it is very important to understand the influence of someparameters on tool forces and develop a model of the relationship between them.
基金supports of the Funds for the National Natural Science Foundation of China [grant numbers 51575386,51275344]
文摘With the increasing market demand for optical complex surface parts,the application of multi-axis ultraprecision single-point diamond turning is increasing.A tool path generation method is very important to decrease manufacturing time,enhance surface quality,and reduce cost.Compared with the tool path generation of the traditional multi-axis milling,that of the ultra-precision single-point diamond turning requires higher calculation accuracy and efficiency.This paper reviews the tool path generation of ultra-precision diamond turning,considering several key issues:cutter location(CL)points calculation,the topological form of tool path,interpolation mode,and G code optimization.
基金Funded by the National High-tech R&D Program ("863" Program) of China (No.2006AA04Z314)
文摘A fast tool servo (FTS) system is developed for the fabrication of non-rotationally symmetric micro-structured surfaces using single-point diamond turning machines.The constructed FTS employs a piezoelectric tube actuator (PZT) to actuate the diamond tool and a capacitive probe as the feedback sensor.To compensate the inherent nonlinear hysteresis behavior of the piezoelectric actuator,Proportional Integral (PI) feedback control is implemented.Besides,a feed-forward control based on a simple feed-forward predictor has been added to achieve better tracking performance.Experimental results indicate that error motions in the performance of the system caused by hysteresis can be reduced greatly and the micro-structured surface is successfully fabricated by implementing the FTS.
基金supported by Japan Society for the Promotion of Science,Grant-in-Aid for Scientific Research(B),Project Number 21H01230.
文摘Diamond turning based on a fast tool servo(FTS)is widely used in freeform optics fabrication due to its high accuracy and machining efficiency.As a new trend,recently developed high-frequency and long-stroke FTS units are independently driven by a separate control system from the machine tool controller.However,the tool path generation strategy for the independently controlled FTS is far from complete.This study aims to establish methods for optimizing tool path for the independent control FTS to reduce form errors in a single step of machining.Different from the conventional integrated FTS control system,where control points are distributed in a spiral pattern,in this study,the tool path for the independent FTS controller is generated by the ring method and the mesh method,respectively.The machined surface profile is predicted by simulation and the parameters for the control point generation are optimized by minimizing the deviation between the predicted and the designed surfaces.To demonstrate the feasibility of the proposed tool path generation strategies,cutting tests of a two-dimensional sinewave and a micro-lens array were conducted and the results were compared.As a result,after tool path optimization,the peak-to-valley form error of the machined surface was reduced from 429 nm to 56 nm for the two-dimensional sinewave by using the ring method,and from 191 nm to 103 nm for the micro-lens array by using the mesh method,respectively.
文摘Using general commercial software, a coupled thermo-mechanical plane strain larger deformation orthogonal cutting model is developed on the basis of updated Lagrangian formulation in this paper. The workpiece is oxygen free high conductivity copper (OFHC copper), its flow stress is considered as a function of strain, strain rate and temperature to reflect its realistic changes in physical properties. In order to take into account the cutting edge radius effects of the single crystal diamond tool, rezoning technology is introduced into this simulation model. Diamond turning process is simulated from the initial stage to the steady stage of chip formation, and the distribution of temperature, equivalent stress, residual stress, strain rate and shear angle are obtained. The simulated principal force is compared with published experiment data and they are found to be in good agreement with each other, but poor for thrust force due to no consideration of elastic recovery for machined surface in the elastic-plastic material model.
基金This project is supported by National Natural Science Foun-dation of China (No. 59835180) Scientific Research Foundation of HIT (No.HIT.2000.63).
文摘A surface roughness model utilizing regression analysis method is developedfor predicting roughness of ultra-precision machined surface with a single crystal diamond tool. Theeffects of the main variables, such as cutting speed, feed, and depth of cut on surface roughnessare also analyzed in diamond turning aluminum alloy. In order to predict the optimum cuttingconditions during process planning. A lot of experimental results show that the model can predictthe surface roughness effectively under a certain cutting conditions.
基金The authors would like to thank EPSRC(EP/K018345/1 and EP/T024844/1)the Royal Society-NSFC international exchange programme(IEC\NSFC\181474)for providing financial support for this researchThe authors also acknowledge the use of the EPSRC(EP/K000586/1)funded ARCHIE-WeSt High-Performance Computer at the University of Strathclyde for the MD simulation study.
文摘In this paper,molecular dynamic(MD)simulation was adopted to study the ductile response of single-crystal GaAs during single-point diamond turning(SPDT).The variations of cutting temperature,coordination number,and cutting forces were revealed through MD simulations.SPDT experiment was also carried out to qualitatively validate MD simulation model from the aspects of normal cutting force.The simulation results show that the fundamental reason for ductile response of GaAs during SPDT is phase transition from a perfect zinc blende structure(GaAs-I)to a rock-salt structure(GaAs-II)under high pressure.Finally,a strong anisotropic machinability of GaAs was also found through MD simulations.
基金National Natural Science Foundation of China(Nos.52175430,51935008 and 52105478)China National Postdoctoral Program for Innovative Talents(BX20200234)Open Fund of Tianjin Key Laboratory of Equipment Design and Manufacturing Technology(EDMT)for the support of this work。
文摘Polycrystalline materials are extensively employed in industry.Its surface roughness significantly affects the working performance.Material defects,particularly grain boundaries,have a great impact on the achieved surface roughness of polycrystalline materials.However,it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods.In this work,a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed.The kinematic–dynamic roughness component in relation to the tool profile duplication effect,work material plastic side flow,relative vibration between the diamond tool and workpiece,etc,is theoretically calculated.The material-defect roughness component is modeled with a cascade forward neural network.In the neural network,the ratio of maximum undeformed chip thickness to cutting edge radius RT S,work material properties(misorientation angle θ_(g) and grain size d_(g)),and spindle rotation speed n s are configured as input variables.The material-defect roughness component is set as the output variable.To validate the developed model,polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools.Compared with the previously developed model,obvious improvement in the prediction accuracy is observed with this hybrid prediction model.Based on this model,the influences of different factors on the surface roughness of polycrystalline materials are discussed.The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed.Two fracture modes,including transcrystalline and intercrystalline fractures at different RTS values,are observed.Meanwhile,optimal processing parameters are obtained with a simulated annealing algorithm.Cutting experiments are performed with the optimal parameters,and a flat surface finish with Sa 1.314 nm is finally achieved.The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning.
基金the National Natural Science Foundation of China(Grant No.52075332)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25040000,XDA25040200,and XDA25040202).
文摘To improve the efficiency and consistency of machined microlens array using single-point diamond turning technology,a theoretical model of surface form error is proposed in this paper.Then,a compensation method for this model is studied.In the proposed tool equivalent tilt angle model,the microlens array is regarded as a freeform surface.The corresponding curvature radius of the surface at each cutting point along the cutting direction is calculated by establishing a slow slide servo cutting model.In the spatial form error model,the assumption is that surface form error has a linear relationship with z-axis maximum speed vz.An empirical linear equation is obtained and verified,with a maximum deviation of 0.4μm.Then,after machining,the surface form error is measured and processed using on-machine measurement.The theoretical and measured surface form errors are consistent.The surface form error is compensated in the machining program.The peak-to-valley value is reduced from 5.4 to 0.6μm after compensation.Findings show that the single-point diamond turning and compensation method for the microlens array presented in this paper can predict the surface form error and significantly improve machining accuracy and consistency.
文摘Single-point diamond turning (SPDT) is widely used in the machining of infrared materials and metal-based mirrors. Diamond tips can scratch material, replicate the shape of the tip, and create annular turning marks on optical surfaces, which can have unpredictable adverse effects on imaging. In order to predict the effect of turning marks diffraction on the degradation of imaging quality, a model of the influence of SPDT processing parameters on the reduction of system imaging MTF under the influence of ideal grating turning marks diffraction was established. The results show that the depth of the turning mark will lead to the decline of MTF, especially the low frequency information. Finally, a method is proposed to reduce the effect of turning marks diffraction through changing the processing parameters. .
文摘nm roughness value of silicon surface by diamond turning is obtained firstly and three novel techniques are proposed. The surface integrity is studied in detail by using atomic force microscope, scanning electron microscope, and stylus surface instrument. The diamond tool sharpness has a considerable influence on the machined surface, therefore a novel technique—brightness modulation for measuring accurately the edge of the cutter is proposed. Mirror surfaces are assessed by another novel technique—a measure of their reflectivity. A third technique, single grit diamond machining is carried out. It supplies a experimental evidence for verifying the obtained high quality turned surfaces.
基金supported by the National Natural Science Foundation of China(Grant Nos.62073184,52105490).
文摘The vibration disturbance from an external environment affects the machining accuracy of ultra-precision machining equipment.Most active vibration-isolation systems(AVIS)have been developed based on static loads.When a vibration-isolation load changes dynamically during ultra-precision turning lathe machining,the system parameters change,and the efficiency of the active vibration-isolation system based on the traditional control strategy deteriorates.To solve this problem,this paper proposes a vibration-isolation control strategy based on a genetic algorithm-back propagation neural network-PID control(GA-BP-PID),which can automatically adjust the control parameters according to the machining conditions.Vibration-isolation simulations and experiments based on passive vibration isolation,a PID algorithm,and the GA-BP-PID algorithm under dynamic load machining conditions were conducted.The experimental results demonstrated that the active vibration-isolation control strategy designed in this study could effectively attenuate vibration disturbances in the external environment under dynamic load conditions.This design is reasonable and feasible.
基金financial support from the National Natural Science Foundation of China(Grant No.52035009)the Science Challenge Project,China(Grant No.TZ2018006-0201-01)+1 种基金the National Key R&D Program of China(Grant No.2016YFB1102203)the“111”project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘Polycrystalline tin is an ideal excitation material for extreme ultraviolet light sources.However,the existence of grain boundary(GB)limits the surface roughness of polycrystalline tin after single-point diamond turning(SPDT).In this work,a novel method termed inductively coupled plasma(ICP)-assisted cutting was developed for the sub-nanometer finishing of polycrystalline tin.The relationship between ICP power,processing time,and modification depth was established by thermodynamic simulation,and the fitted heat transfer coefficient of polycrystalline tin was 540 W/(m2·K).The effects of large-thermal-gradient ICP treatment on the microstructure of polycrystalline tin were studied.After 0.9 kW ICP processing for 3.0 s,corresponding to the temperature gradient of 0.30 K/μm,the grain size of polycrystalline tin was expanded from a size of approximately 20-80μm to a millimeter scale.The Taguchi method was used to investigate the effects of rotational speed,depth of cut,and feed rate on SPDT.Experiments conducted based on the ICP system indicated that the plasma-assisted cutting method promoted the reduction of the influence of GB steps on the finishing of polycrystalline tin,thereby achieving a surface finish from 8.53 to 0.80 nm in Sa.The results of residual stress release demonstrated that the residual stress of plasma-assisted turning processing after 504 h stress release was 10.7 MPa,while that of the turning process without the ICP treatment was 41.6 MPa.