Diamond-copper composites were prepared by powder metallurgy,in which the diamond particles were pre-coated by magnetic sputtering with copper alloy containing a small amount of carbide forming elements(including B,Cr...Diamond-copper composites were prepared by powder metallurgy,in which the diamond particles were pre-coated by magnetic sputtering with copper alloy containing a small amount of carbide forming elements(including B,Cr,Ti,and Si).The influence of the carbide forming element additives on the microstructure and thermal conductivity of diamond composites was investigated.It is found that the composites fabricated with Cu-0.5B coated diamond particles has a relatively higher density and its thermal conductivity approaches 300 W/(m·K).Addition of 0.5%B improves the interfacial bonding and decreases thermal boundary resistance between diamond and Cu,while addition of 1%Cr makes the interfacial layer break away from diamond surface.The actual interfacial thermal conductivity of the composites with Cu-0.5B alloy coated on diamond is much higher than that of the Cu-1Cr layer,which suggests that the intrinsic thermal conductivity of the interfacial layer is an important factor for improving the thermal conductivity of the diamond composites.展开更多
Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond we...Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.展开更多
Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displ...Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displacement reaction in CuSO4 solution using zinc powder as a reductant. The structure and electrochemical property of the so-prepared powders were characterized by means of XRD (powder X-ray diffraction) and the galvanostatic discharge-charge techniques. The results show that the electrochemical property of Cs0.35V2O5/Cu composite material is significantly improved compared to the bulk Cs0.35V2O5 material. The Cs0.35V2O5/Cu composite material exhibits the first discharge capacity as high as 164.3 mAh.g -1 in the range of 4.2-1.8V at a current rate of 10 mA.g-1 and remains at a stable discharge capacity of about 110 mAh.g-1 within 40 cycles.展开更多
An unlubricated sliding friction test on C/Cu composite materials is described. The result of the test proves that adhesive wear is the domination. At a certain speed, when the load upon the test block is light, the w...An unlubricated sliding friction test on C/Cu composite materials is described. The result of the test proves that adhesive wear is the domination. At a certain speed, when the load upon the test block is light, the wear rate remains low level and the friction pair has a good antifriction performance. But when the load increases to a certain value, the wear transitions happen, the wear becomes severe.展开更多
In this paper,diamond/CuCr and diamond/CuB composites were prepared using the pressure infiltration method.The physical property measurement system(PPMS)was adopted to evaluate the thermal conductivity of diamond/Cu a...In this paper,diamond/CuCr and diamond/CuB composites were prepared using the pressure infiltration method.The physical property measurement system(PPMS)was adopted to evaluate the thermal conductivity of diamond/Cu and MoCu composites within the range of100–350 K,and a scanning electron microscope(SEM)was utilized to analyze the microstructure and fracture appearance of the materials.The research indicates that the thermal conductivity of diamond/Cu composite within the range of100–350 K is 2.5–3.0 times that of the existing MoCu material,and the low-temperature thermal conductivity of diamond/Cu composite presents an exponential relationship with the temperature.If B element was added to a Cu matrix and a low-temperature binder was used for prefabricated elements,favorable interfacial adhesion,relatively high interfacial thermal conductivity,and favorable low-temperature heat conduction characteristics would be apparent.展开更多
The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites wer...The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites were then studied. After that, the amount of a-Fe(Ni,Co) in the composites is reduced, because a-Fe(Ni,Co) partly transfers into y-Fe(Ni,Co) through the diffusion of the Ni atoms into a-Fe(Ni,Co) from Cu. When the rolling reduction is less than 40%, the deformation of Cu takes place, resulting in the movement of the Invar particles and the seaming of the pores. When the rolling reduction is in the range from 40% to 60%, the deformations of Invar and Cu occur simultaneously to form a streamline structure. After rolling till 70% and subsequent annealing, the Cu/Invar composites have fine comprehensive properties with a relative density of 98.6%, a tensile strength of 360 MPa, an elongation rate of 50%, a thermal conductivity of 25.42 W/(m.K) (as-tested) and a CTE of 10.79× 10-6/K (20-100 ℃).展开更多
The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle v...The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle volume fraction,the particle size and the volume ratio of the diamond particles to the total particles on the thermal conductivity of the composite were studied.The DEM theoretical calculation results show that,for the diamond hybrid SiC/Cu composite,when the particle volume fraction is above 46% and the volume ratio of the diamond particles to the SiC particles is above 13:12,the thermal conductivity of the composite can reach 500 W·m-1·K-1.The thermal conduc-tivity of the composite has little change when the particle size is above 200μm.The experimental results show that Ti can improve the wettability of the SiC and Cu.The thermal conductivity of the diamond hybrid SiCTi/Cu is almost two times better than that of the diamond hybrid SiC/Cu.It is feasible to predict the thermal conductivity of the composite by DEM theoretical model.展开更多
The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of...The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well.展开更多
A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styren...A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styrene/Cu (ABS/Cu) gradient polymeric composites were prepared successfully using this technique. The gradient structures, electrically conductive performance and mechanical properties of the ABS/Cu composites were investigated. Optical microscope observation shows that the gradient distribution of Cu particles in ABS matrix was formed along their thickness-direction. The electrically conductive testing results indicate that the order of magnitude of surface resistivity was kept in 10^15 Ω at ABS rich side, while that declined to 10^5 Ω at Cu particles rich side, and the percolation threshold was in the range of 2.82 vo1%- 4.74 vol% Cu content at Cu particles rich side. Mechanical test shows that the tensile strength reduced insignificantly as the content of Cu increases owing to the gradient distribution.展开更多
ZnS-Diatnond cotnPOsites (ZnS/D) were fabricated by hot pressing to obtain a ZnS ithered transparent materials with incmeed toughness. The relations of the mechanical properties and the diomond contents were investiga...ZnS-Diatnond cotnPOsites (ZnS/D) were fabricated by hot pressing to obtain a ZnS ithered transparent materials with incmeed toughness. The relations of the mechanical properties and the diomond contents were investigated. It was determined that,when the content of diamond is in the mnge hem 1% to 10%, the toughness of the composite fits the equation KIC = cexp(a+bx). The constants c, a, and b determined experimentally are 10-6, d.47 and 9.70 respectively.展开更多
Constituents of the oxidized surface film on diamond particles reinforced Cu-Cd alloy matrix composite (Cp/Cu-Cd) were investigated by XPS. The results show that Cu2O is the main constituent when the oxidized film i...Constituents of the oxidized surface film on diamond particles reinforced Cu-Cd alloy matrix composite (Cp/Cu-Cd) were investigated by XPS. The results show that Cu2O is the main constituent when the oxidized film is thin; CuO appears only after the film is rather thick. The originally formed oxidized film on the Cp/Cu-Cd is about 10nm in thickness and is mainly composed of Cu2O and Cu. After oxidized at 120℃ over 30h, CuO is detected in the film.展开更多
The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electr...The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electron probe. The bonding strength of composite interface was tested and the fracture in tensile sample was observed by SEM. The results show that there was inter diffusion of Ag and Cu atoms on the interface, which formed compact layer with high bonding strength of 98 MPa. The practical application proved that the Ag/Cu composite interface is reliable.展开更多
The Cu-10Ag and Cu-10Ag-RE (RE=Ce, Y) alloys in situ filamentary composites were prepared. The relationships of the ultimate tensile strengths (UTS) and microstructure changes of the composites were studied. With ...The Cu-10Ag and Cu-10Ag-RE (RE=Ce, Y) alloys in situ filamentary composites were prepared. The relationships of the ultimate tensile strengths (UTS) and microstructure changes of the composites were studied. With increasing of the true strain η, the sizes of the Ag filaments in the composites reduce according to a negative exponential function of η:d=d0·exp(-0.228η), and the UTS of the composites increase also according to a exponential function of η, σ Cu/Ag=σ 0(Cu)+[k Cu/Agd0 -1/2]exp(η/3), here d0 is a coefficient related to the original size of Ag phase. The strain strengthening follows a two-stage strengthening effect. The strengthening mechanisms are related to changes of microstructure in the deformation process. At the low true strain stage, the strengthening is mainly caused by the working hardening controlled by dislocation increasing; at the high true strain stage, the strengthening is mainly caused by the super-fine Ag filaments and the large coherent interfaces between the Ag filaments and Cu matrix. The trace RE additions and the rapid solidification obviously refine scales of the Ag filament of the composites, and therefore obviously increased the strain strengthening rate. The microstructure refinement of the composites, especially the refinement of Ag filament, is the main reason of the high strain strengthening effect in Cu-Ag alloy in situ filamentary composites.展开更多
基金Project(82129)supported by the Innovative Foundation of Science and Technology of General Research Institute of Nonferrous Metals,China
文摘Diamond-copper composites were prepared by powder metallurgy,in which the diamond particles were pre-coated by magnetic sputtering with copper alloy containing a small amount of carbide forming elements(including B,Cr,Ti,and Si).The influence of the carbide forming element additives on the microstructure and thermal conductivity of diamond composites was investigated.It is found that the composites fabricated with Cu-0.5B coated diamond particles has a relatively higher density and its thermal conductivity approaches 300 W/(m·K).Addition of 0.5%B improves the interfacial bonding and decreases thermal boundary resistance between diamond and Cu,while addition of 1%Cr makes the interfacial layer break away from diamond surface.The actual interfacial thermal conductivity of the composites with Cu-0.5B alloy coated on diamond is much higher than that of the Cu-1Cr layer,which suggests that the intrinsic thermal conductivity of the interfacial layer is an important factor for improving the thermal conductivity of the diamond composites.
文摘Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.
文摘Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displacement reaction in CuSO4 solution using zinc powder as a reductant. The structure and electrochemical property of the so-prepared powders were characterized by means of XRD (powder X-ray diffraction) and the galvanostatic discharge-charge techniques. The results show that the electrochemical property of Cs0.35V2O5/Cu composite material is significantly improved compared to the bulk Cs0.35V2O5 material. The Cs0.35V2O5/Cu composite material exhibits the first discharge capacity as high as 164.3 mAh.g -1 in the range of 4.2-1.8V at a current rate of 10 mA.g-1 and remains at a stable discharge capacity of about 110 mAh.g-1 within 40 cycles.
文摘An unlubricated sliding friction test on C/Cu composite materials is described. The result of the test proves that adhesive wear is the domination. At a certain speed, when the load upon the test block is light, the wear rate remains low level and the friction pair has a good antifriction performance. But when the load increases to a certain value, the wear transitions happen, the wear becomes severe.
基金supported by the National Natural Science Foundation of China (No. 50971020)
文摘In this paper,diamond/CuCr and diamond/CuB composites were prepared using the pressure infiltration method.The physical property measurement system(PPMS)was adopted to evaluate the thermal conductivity of diamond/Cu and MoCu composites within the range of100–350 K,and a scanning electron microscope(SEM)was utilized to analyze the microstructure and fracture appearance of the materials.The research indicates that the thermal conductivity of diamond/Cu composite within the range of100–350 K is 2.5–3.0 times that of the existing MoCu material,and the low-temperature thermal conductivity of diamond/Cu composite presents an exponential relationship with the temperature.If B element was added to a Cu matrix and a low-temperature binder was used for prefabricated elements,favorable interfacial adhesion,relatively high interfacial thermal conductivity,and favorable low-temperature heat conduction characteristics would be apparent.
文摘The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites were then studied. After that, the amount of a-Fe(Ni,Co) in the composites is reduced, because a-Fe(Ni,Co) partly transfers into y-Fe(Ni,Co) through the diffusion of the Ni atoms into a-Fe(Ni,Co) from Cu. When the rolling reduction is less than 40%, the deformation of Cu takes place, resulting in the movement of the Invar particles and the seaming of the pores. When the rolling reduction is in the range from 40% to 60%, the deformations of Invar and Cu occur simultaneously to form a streamline structure. After rolling till 70% and subsequent annealing, the Cu/Invar composites have fine comprehensive properties with a relative density of 98.6%, a tensile strength of 360 MPa, an elongation rate of 50%, a thermal conductivity of 25.42 W/(m.K) (as-tested) and a CTE of 10.79× 10-6/K (20-100 ℃).
基金financially supported by High-Technology Research and Development Program of China (No.2008AA03Z505)
文摘The thermal conductivity of diamond hybrid SiC/Cu,diamond/Cu and SiC/Cu composite were calculated by using the extended differential effective medium (DEM) theoretical model in this paper.The effects of the particle volume fraction,the particle size and the volume ratio of the diamond particles to the total particles on the thermal conductivity of the composite were studied.The DEM theoretical calculation results show that,for the diamond hybrid SiC/Cu composite,when the particle volume fraction is above 46% and the volume ratio of the diamond particles to the SiC particles is above 13:12,the thermal conductivity of the composite can reach 500 W·m-1·K-1.The thermal conduc-tivity of the composite has little change when the particle size is above 200μm.The experimental results show that Ti can improve the wettability of the SiC and Cu.The thermal conductivity of the diamond hybrid SiCTi/Cu is almost two times better than that of the diamond hybrid SiC/Cu.It is feasible to predict the thermal conductivity of the composite by DEM theoretical model.
基金the National Natural Science Foundation of China (No. 50375019).
文摘The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well.
基金Funded by the National Natural Science Foundation of China(No.21274007)the Beijing Natural Science Foundation+1 种基金the Key Scientific Project of Beijing Municipal Education Commission(No.KZ201110011014)the Science and Technology Innovation Platform of Beijing Municipal Education Commission(No.PXM2012-014213-000025)
文摘A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styrene/Cu (ABS/Cu) gradient polymeric composites were prepared successfully using this technique. The gradient structures, electrically conductive performance and mechanical properties of the ABS/Cu composites were investigated. Optical microscope observation shows that the gradient distribution of Cu particles in ABS matrix was formed along their thickness-direction. The electrically conductive testing results indicate that the order of magnitude of surface resistivity was kept in 10^15 Ω at ABS rich side, while that declined to 10^5 Ω at Cu particles rich side, and the percolation threshold was in the range of 2.82 vo1%- 4.74 vol% Cu content at Cu particles rich side. Mechanical test shows that the tensile strength reduced insignificantly as the content of Cu increases owing to the gradient distribution.
文摘ZnS-Diatnond cotnPOsites (ZnS/D) were fabricated by hot pressing to obtain a ZnS ithered transparent materials with incmeed toughness. The relations of the mechanical properties and the diomond contents were investigated. It was determined that,when the content of diamond is in the mnge hem 1% to 10%, the toughness of the composite fits the equation KIC = cexp(a+bx). The constants c, a, and b determined experimentally are 10-6, d.47 and 9.70 respectively.
文摘Constituents of the oxidized surface film on diamond particles reinforced Cu-Cd alloy matrix composite (Cp/Cu-Cd) were investigated by XPS. The results show that Cu2O is the main constituent when the oxidized film is thin; CuO appears only after the film is rather thick. The originally formed oxidized film on the Cp/Cu-Cd is about 10nm in thickness and is mainly composed of Cu2O and Cu. After oxidized at 120℃ over 30h, CuO is detected in the film.
文摘The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electron probe. The bonding strength of composite interface was tested and the fracture in tensile sample was observed by SEM. The results show that there was inter diffusion of Ag and Cu atoms on the interface, which formed compact layer with high bonding strength of 98 MPa. The practical application proved that the Ag/Cu composite interface is reliable.
基金The National Natural Science Foundation of China(No:50371031)
文摘The Cu-10Ag and Cu-10Ag-RE (RE=Ce, Y) alloys in situ filamentary composites were prepared. The relationships of the ultimate tensile strengths (UTS) and microstructure changes of the composites were studied. With increasing of the true strain η, the sizes of the Ag filaments in the composites reduce according to a negative exponential function of η:d=d0·exp(-0.228η), and the UTS of the composites increase also according to a exponential function of η, σ Cu/Ag=σ 0(Cu)+[k Cu/Agd0 -1/2]exp(η/3), here d0 is a coefficient related to the original size of Ag phase. The strain strengthening follows a two-stage strengthening effect. The strengthening mechanisms are related to changes of microstructure in the deformation process. At the low true strain stage, the strengthening is mainly caused by the working hardening controlled by dislocation increasing; at the high true strain stage, the strengthening is mainly caused by the super-fine Ag filaments and the large coherent interfaces between the Ag filaments and Cu matrix. The trace RE additions and the rapid solidification obviously refine scales of the Ag filament of the composites, and therefore obviously increased the strain strengthening rate. The microstructure refinement of the composites, especially the refinement of Ag filament, is the main reason of the high strain strengthening effect in Cu-Ag alloy in situ filamentary composites.