A dichlorosilane gas and a trichlorosilane gas in ambient hydrogen were evaluated to show their different gas flow motions in a slim vertical cold wall chemical vapor deposition reactor for the Minimal Fab system. Thi...A dichlorosilane gas and a trichlorosilane gas in ambient hydrogen were evaluated to show their different gas flow motions in a slim vertical cold wall chemical vapor deposition reactor for the Minimal Fab system. This evaluation was performed for improving and controlling the film qualities and the productivities, using two quartz crystal microbalances (QCM) installed at the </span><span style="font-family:Verdana;">inlet and exhaust of the chamber by taking into account that the QCM frequency corresponds to the real time changes in the gas properties.</span><span style="font-family:Verdana;"> Typically, the time period approaching from the inlet to the exhaust was shorter for the trichlorosilane gas than that for the dichlorosilane gas. The trichlorosilane gas was shown to move like plug flow, while the dichlorosilane gas seemed to be well mixed in the entire chamber.展开更多
Methyl-(γ-chloropropyl)dichlorosilane was synthesized under the catalysis of a silicasupported Karstedt-type catalyst. By orthogonal experimental design method, the optimum reaction parameters such as reactants rat...Methyl-(γ-chloropropyl)dichlorosilane was synthesized under the catalysis of a silicasupported Karstedt-type catalyst. By orthogonal experimental design method, the optimum reaction parameters such as reactants ratio, reaction temperature and time, and the dosage of catalyst, were determined. At the optimum reaction condition the product yield reached 78.42%, which is higher than that reported in the literatures.展开更多
A boron-silicon film was formed from boron trichloride gas and dichlorosilane gas at about 900℃in ambient hydrogen at atmospheric pressure utilizing a slim vertical cold wall chemical vapor deposition reacto...A boron-silicon film was formed from boron trichloride gas and dichlorosilane gas at about 900℃in ambient hydrogen at atmospheric pressure utilizing a slim vertical cold wall chemical vapor deposition reactor designed for the Minimal Fab system. The gas flow rates were 80, 20 and 0.1 - 20 sccm for the hydrogen, dichlorosilane and boron trichloride gases, respectively. The gas transport condition in the reactor was shown to quickly become stable when evaluated by quartz crystal microbalances at the inlet and outlet. The boron-silicon thin film was formed by achieving the various boron concentrations of 0.16% - 80%, the depth profile of which was flat. By observing the cross-sectional TEM image, the obtained film was dense. The boron trichloride gas is expected to be useful for the quick fabrication of various materials containing boron at significantly low and high concentrations.展开更多
文摘A dichlorosilane gas and a trichlorosilane gas in ambient hydrogen were evaluated to show their different gas flow motions in a slim vertical cold wall chemical vapor deposition reactor for the Minimal Fab system. This evaluation was performed for improving and controlling the film qualities and the productivities, using two quartz crystal microbalances (QCM) installed at the </span><span style="font-family:Verdana;">inlet and exhaust of the chamber by taking into account that the QCM frequency corresponds to the real time changes in the gas properties.</span><span style="font-family:Verdana;"> Typically, the time period approaching from the inlet to the exhaust was shorter for the trichlorosilane gas than that for the dichlorosilane gas. The trichlorosilane gas was shown to move like plug flow, while the dichlorosilane gas seemed to be well mixed in the entire chamber.
基金support from the National Natural Science Foundation of China(No.50473036)
文摘Methyl-(γ-chloropropyl)dichlorosilane was synthesized under the catalysis of a silicasupported Karstedt-type catalyst. By orthogonal experimental design method, the optimum reaction parameters such as reactants ratio, reaction temperature and time, and the dosage of catalyst, were determined. At the optimum reaction condition the product yield reached 78.42%, which is higher than that reported in the literatures.
文摘A boron-silicon film was formed from boron trichloride gas and dichlorosilane gas at about 900℃in ambient hydrogen at atmospheric pressure utilizing a slim vertical cold wall chemical vapor deposition reactor designed for the Minimal Fab system. The gas flow rates were 80, 20 and 0.1 - 20 sccm for the hydrogen, dichlorosilane and boron trichloride gases, respectively. The gas transport condition in the reactor was shown to quickly become stable when evaluated by quartz crystal microbalances at the inlet and outlet. The boron-silicon thin film was formed by achieving the various boron concentrations of 0.16% - 80%, the depth profile of which was flat. By observing the cross-sectional TEM image, the obtained film was dense. The boron trichloride gas is expected to be useful for the quick fabrication of various materials containing boron at significantly low and high concentrations.