期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
CREATION OF OPTIMAL MOVEMENT STRATEGY OF PLURAL MOVING OB-JECTS BY GA
1
作者 Su Suchen Tsuchiya Kiichi( Waseda University, Japan) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第2期87-96,共10页
The topographic information of a closed world is expressed as a graph. The plural mov- ingobjects which go and back in it according to a single moving strategy are supposed.The moving strategy is expressed by numerica... The topographic information of a closed world is expressed as a graph. The plural mov- ingobjects which go and back in it according to a single moving strategy are supposed.The moving strategy is expressed by numerical values as a decision table. Coding is performed with this table as chromosomes, and this is optimized by using genetic algorithm. These environments were realized on a computer, and the simulation was carried out. As the result, the learning of the method to act so that moving objects do not obstruct mutually was recognized, and it was confirmed that these methods are effective for optimizing moving strategy. 展开更多
关键词 Genetic algorithm Graph theory Strategy Cooperative behavior Machine learn- ing
下载PDF
基于字典学习和物联网边缘计算的水利水电监测图像压缩传输研究
2
作者 郭翔 王永涛 +1 位作者 余云昊 狄查美玲 《机械设计与制造》 北大核心 2023年第10期26-30,35,共6页
针对水利水电工程中图像压缩传输的需求,这里提出基于K-SVD、压缩采样匹配追踪(CoSaMP)重构的欠完备字典学习及稀疏表达方式,并结合图像块字典更新学习得到终端边缘计算有损压缩方法。之后设计了应用于4G、GPRS网络环境的物联网终端系... 针对水利水电工程中图像压缩传输的需求,这里提出基于K-SVD、压缩采样匹配追踪(CoSaMP)重构的欠完备字典学习及稀疏表达方式,并结合图像块字典更新学习得到终端边缘计算有损压缩方法。之后设计了应用于4G、GPRS网络环境的物联网终端系统。工程应用结果表明,所提的方法及设计的终端模块能够实现在短时间(计算时间最长14.2s)内达到最高93%、最低59.8%的数据压缩比,重建图像能够清晰表达原图像特征,峰值信噪比(PSNR)达到(24.3~25.4)db,优于传统压缩传输方法。这里所提系统具有低成本、低功耗、较高性能的优点,有效解决实际应用中图像采集连接超时、成像时延大、数据传输成本高的问题。 展开更多
关键词 图像压缩 K-SVD CoSaMP 字典学习 稀疏表达 物联网边缘计算
下载PDF
基于压缩感知与结构自相似性的遥感图像超分辨率方法 被引量:7
3
作者 潘宗序 黄慧娟 +4 位作者 禹晶 胡少兴 张爱武 马洪兵 孙卫东 《信号处理》 CSCD 北大核心 2012年第6期859-872,共14页
本文提出了一种基于压缩感知、结构自相似性和字典学习的遥感图像超分辨率方法,其基本思路是建立能够稀疏表示原始高分辨率图像块的字典。实现超分辨率所必需的附加信息来源于遥感图像中广泛存在的自相似结构,该信息可在压缩感知框架下... 本文提出了一种基于压缩感知、结构自相似性和字典学习的遥感图像超分辨率方法,其基本思路是建立能够稀疏表示原始高分辨率图像块的字典。实现超分辨率所必需的附加信息来源于遥感图像中广泛存在的自相似结构,该信息可在压缩感知框架下通过字典学习而得到。这里,本文采用K-SVD方法构建字典、并采用OMP方法获取用于稀疏表达的相关系数。与现有基于样本的超分辨率方法的最大不同在于,本文方法仅使用了低分辨率图像及其插值图像,而不需要使用其他高分辨率图像。另外,为了评价方法的效果,本文还引入了一个衡量图像结构自相似性程度的新型指标SSSIM。对比实验结果表明,本文方法具有更好的超分辨率重构效果和运算效率,并且SSSIM指标与超分辨率重构效果具有较强的相关性。 展开更多
关键词 遥感图像超分辨率 结构自相似性 压缩感知 字典训练 图像质量评价
下载PDF
关于金初词鉴赏的商榷 被引量:1
4
作者 刘锋焘 《陕西师范大学学报(哲学社会科学版)》 CSSCI 北大核心 2001年第2期76-79,共4页
某些金代初期的词作赏析或疏于对具体的历史背景详加考察,或对作家生平及作品写作年代考证不足。对词作的赏析应当本着“见仁见智”的态度,充分掌握并熟悉有关史料。
关键词 金词 文学鉴赏 《唐宋词鉴赏辞典》《金元明清词鉴赏词典》
下载PDF
手机汉语学习词典在华文教学应用中的调查报告
5
作者 刘香君 《世界华文教学》 2016年第1期34-42,共9页
外国学生在学习华文的过程中几乎都使用过手机汉语学习词典,本研究对18种手机汉语学习词典的功能一一进行了核查,对171份调查问卷展开研究,从手机学习词典的类型和使用频率、查阅词典目的、影响词典选择的因素、所用词典能否满足需求等... 外国学生在学习华文的过程中几乎都使用过手机汉语学习词典,本研究对18种手机汉语学习词典的功能一一进行了核查,对171份调查问卷展开研究,从手机学习词典的类型和使用频率、查阅词典目的、影响词典选择的因素、所用词典能否满足需求等方面寻找特点总结规律,为汉语学习者和教授者的使用和选择提供参考,为研发商的研究和开发提供依据。 展开更多
关键词 手机汉语学习词典 华文教学 移动学习
下载PDF
基于字典对齐的迁移稀疏编码图像分类
6
作者 李泽军 潘杰 韩丽 《电讯技术》 北大核心 2018年第8期878-884,共7页
基于稀疏编码的图像分类算法,当源域和目标域间样本服从不同分布时,从源域样本中学习到的字典无法有效对目标域样本进行编码,进而严重影响算法的分类性能。为了解决此问题,提出一种基于字典对齐的迁移稀疏编码(TSC-DA)算法。一方面,通... 基于稀疏编码的图像分类算法,当源域和目标域间样本服从不同分布时,从源域样本中学习到的字典无法有效对目标域样本进行编码,进而严重影响算法的分类性能。为了解决此问题,提出一种基于字典对齐的迁移稀疏编码(TSC-DA)算法。一方面,通过将字典对齐机制引入稀疏编码模型训练过程中,以减少源域和目标域间样本分布差异;另一方面,采用L2正则化项代替字典约束项,将其转化为无约束优化问题,从而回避了拉格朗日对偶法复杂的求解方式。实验结果表明,TSC-DA能够有效提高目标域的图像分类精度。 展开更多
关键词 图像分类 图像表示 稀疏编码 字典对齐 迁移学习 L2正则化
下载PDF
IMAGE RESTOR ATION UNDER CAUCHY NOISE WITH SPA RSE REPR ESENTATION PRIOR AND TOTAL GENER ALIZED VA RIATION 被引量:1
7
作者 Miyoun Jung Myungjoo Kang 《Journal of Computational Mathematics》 SCIE CSCD 2021年第1期81-107,共27页
This article introduces a novel variational model for restoring images degraded by Cauchy noise and/or blurring.The model integrates a nonconvex data-fidelity term with two regularization terms,a sparse representation... This article introduces a novel variational model for restoring images degraded by Cauchy noise and/or blurring.The model integrates a nonconvex data-fidelity term with two regularization terms,a sparse representation prior over dictionary learning and total generalized variation(TGV)regularization.The sparse representation prior exploiting patch information enables the preservation of fine features and textural patterns,while adequately denoising in homogeneous regions and contributing natural visual quality.TGV regularization further assists in effectively denoising in smooth regions while retaining edges.By adopting the penalty method and an alternating minimization approach,we present an efficient iterative algorithm to solve the proposed model.Numerical results establish the superiority of the proposed model over other existing models in regard to visual quality and certain image quality assessments. 展开更多
关键词 Image restoration Cauchy noise Sparse representation prior dictionary learn-ing Total generalized variation.
原文传递
Probabilistic models of vision and max-margin methods
8
作者 Alan YUILLE Xuming HE 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2012年第1期94-106,共13页
It is attractive to formulate problems in computer vision and related fields in term of probabilis- tic estimation where the probability models are defined over graphs, such as grammars. The graphical struc- tures, an... It is attractive to formulate problems in computer vision and related fields in term of probabilis- tic estimation where the probability models are defined over graphs, such as grammars. The graphical struc- tures, and the state variables defined over them, give a rich knowledge representation which can describe the complex structures of objects and images. The proba- bility distributions defined over the graphs capture the statistical variability of these structures. These proba- bility models can be learnt from training data with lim- ited amounts of supervision. But learning these models suffers from the difficulty of evaluating the normaliza- tion constant, or partition function, of the probability distributions which can be extremely computationally demanding. This paper shows that by placing bounds on the normalization constant we can obtain compu- rationally tractable approximations. Surprisingly, for certain choices of loss functions, we obtain many of the standard max-margin criteria used in support vector machines (SVMs) and hence we reduce the learning to standard machine learning methods. We show that many machine learning methods can be obtained in this way as approximations to probabilistic methods including multi-class max-margin, ordinal regression, max-margin Markov networks and parsers, multiple- instance learning, and latent SVM. We illustrate this work by computer vision applications including image labeling, object detection and localization, and motion estimation. We speculate that rained by using better bounds better results can be ob- and approximations. 展开更多
关键词 structured prediction max-margin learn- ing probabilistic models loss function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部