Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the cera...Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.展开更多
In this study, we report on advanced Ni3Al based high temperature structural alloys with Zr and B addition in order to apply in the fields of die-casting and high temperature press forming as die materials. Microstruc...In this study, we report on advanced Ni3Al based high temperature structural alloys with Zr and B addition in order to apply in the fields of die-casting and high temperature press forming as die materials. Microstructures and mechanical properties of Ni3Al based intermetallic alloys produced by vacuum arc melting were investigated in terms of phase analysis by using a scanning electron microscope (SEM) equipped with an X-ray energy dispersive spectrometer (EDS), an X-ray diffractometer (XRD) and tensile test. The duplex microstructural feature consisting of γ' matrix phase and small intermetallic dispersoids was observed to be distributed over the whole microstructure. The ultimate tensile strength of the present alloy was superior to commercial iron-based and Ni-based die-materials especially in the high temperature region.展开更多
基金Project supported by National Natural Science Foundation of China (50405047)Natural Science foundation of Shandong Province (Y2005F04)Jinan Young Star Plan of Science and Technology (08108)
文摘Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.
文摘In this study, we report on advanced Ni3Al based high temperature structural alloys with Zr and B addition in order to apply in the fields of die-casting and high temperature press forming as die materials. Microstructures and mechanical properties of Ni3Al based intermetallic alloys produced by vacuum arc melting were investigated in terms of phase analysis by using a scanning electron microscope (SEM) equipped with an X-ray energy dispersive spectrometer (EDS), an X-ray diffractometer (XRD) and tensile test. The duplex microstructural feature consisting of γ' matrix phase and small intermetallic dispersoids was observed to be distributed over the whole microstructure. The ultimate tensile strength of the present alloy was superior to commercial iron-based and Ni-based die-materials especially in the high temperature region.