We report the dielectric constant of 1 M LiPF_(6)in EC:EMC 3∶7 w/w(ethylene carbonate/ethyl methyl carbonate)in addition to neat EC:EMC 3∶7 w/w.Using three Debye relaxations,the static permittivity value,or dielectr...We report the dielectric constant of 1 M LiPF_(6)in EC:EMC 3∶7 w/w(ethylene carbonate/ethyl methyl carbonate)in addition to neat EC:EMC 3∶7 w/w.Using three Debye relaxations,the static permittivity value,or dielectric constant,is extrapolated to 18.5,which is compared to 18.7 for the neat solvent mixture.The EC solvent is found to strongly coordinate with the Li^(+)cations of the salt,which results in a loss of dielectric contribution to the electrolyte.However,the small amplitude and large uncertainty in relaxation frequency for EMC cloud definitive identification of the Li^(+)solvation shell.Importantly,the loss of the free EC permittivity contribution due to Li^(+)solvation is almost completely balanced by the positive contribution of the associated LiPF_(6)salt,demonstrating that a significant quantity of dipolar ion pairs exists in 1 M LiPF_(6)in EC:EMC 3∶7.展开更多
The evolution of electronic communication technology raises higher requirements for low dielectric constant(low-k)materials.For this,a benzoxazine functional organosilicon(HP-aptes)with dense Si—O—Si crosslinking ne...The evolution of electronic communication technology raises higher requirements for low dielectric constant(low-k)materials.For this,a benzoxazine functional organosilicon(HP-aptes)with dense Si—O—Si crosslinking networks and large sterically hindered tert-butyl groups was prepared by the sol–gel method.Then,a series of polybenzoxazine composites(PPHP)were prepared from intrinsically low dielectric constant bis-functional benzoxazine monomer(P-aptmds)and HP-aptes.The double crosslinking networks of polybenzoxazine and organosilicon further increased the crosslinking density and decreased the dipole density of composites,which endowed the composites with enhanced low-k properties.When the content of HP-aptes is 30%(mass),the crosslinking density was 2.05×10^(-3)mol·cm^(-3),while that of PP-aptmds was 3.31×10^(-3)mol·cm^(-3).In addition,the dielectric constant and dielectric loss of PPHP composite at 1 MHz could reach 2.61 and 0.0056,respectively.展开更多
This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-di...This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-directional shear consists of a static shear consolidation and subsequent shear under constant vertical stress and constant volume conditions.A side wall node loading method is used to exert bi-directional shear of various angles.The results show that bi-directional shear can significantly influence the mechanical behaviour of granular materials.However,the relationship between bidirectional shear and mechanical responses relies on loading conditions,i.e.constant vertical stress or constant volume conditions.The stress states induced by static shear consolidation are affected by loading angles,which are enlarged by subsequent shear,consistent with the relationship between bidirectional shear and principal stresses.It provides evidence for the dissipation of stresses accompanying static liquefaction of granular materials.The presence of bi-directional principal stress rotation(PSR)is demonstrated,which evidences why the bi-directional shear of loading angles with components in two directions results in faster dissipations of stresses with static liquefaction.Contant volume shearing leads to cross-anisotropic stress and fabric at micro-contacts,but constant vertical stress shearing leads to complete anisotropic stress and fabric at micro-contacts.It explains the differentiating relationship between stress-strain responses and fabric anisotropy under these two conditions.Micromechanical signatures such as the slip state of micro-contacts and coordination number are also examined,providing further insights into understanding granular behaviour under bi-directional shear.展开更多
Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the...Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the net cooling power.Despite various selective thermal emitters have been demonstrated,it is still challenging to achieve these conditions sim-ultaneously because of the extreme difficulty in controlling thermal emission of photonic structures in multidimension.Here we demonstrated hybrid polar dielectric metasurface thermal emitters with machine learning inverse design,en-abling a high emissivity of~0.92 within the atmospheric transparency window 8-13μm,a large spectral selectivity of~1.8 and a wide emission angle up to 80 degrees,simultaneously.This selective and omnidirectional thermal emitter has led to a new record of temperature reduction as large as~15.4°C under strong solar irradiation of~800 W/m2,signific-antly surpassing the state-of-the-art results.The designed structures also show great potential in tackling the urban heat island effect,with modelling results suggesting a large energy saving and deployment area reduction.This research will make significant impact on passive radiative cooling,thermal energy photonics and tackling global climate change.展开更多
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)condit...To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.展开更多
Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DB...Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity.In this work,the uniformity and discharge characteristics of the nanosecond(ns)pulsed DBD with dielectric barrier layers made of alumina,quartz glass,polycarbonate(PC),and polypropylene(PP)are investigated via discharge image observation,voltage-current waveform measurement and optical emission spectral diagnosis.Through analyzing discharge image by gray value standard deviation method,the discharge uniformity is quantitatively calculated.The effects of the space electric field intensity,the electron density(Ne),and the space reactive species on the uniformity are studied with quantifying the gap voltage Ug and the discharge current Ig,analyzing the recorded optical emission spectra,and simulating the temporal distribution of Ne with a one-dimensional fluid model.It is found that as the relative permittivity of the dielectric materials increases,the space electric field intensity is enhanced,which results in a higher Ne and electron temperature(Te).Therefore,an appropriate value of space electric field intensity can promote electron avalanches,resulting in uniform and stable plasma by the merging of electron avalanches.However,an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field,which reduce the discharge uniformity.The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity.The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity,and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform,stable,and reactive plasma sources.展开更多
How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote ...How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote theε_(r)and E_(b)of linear poly(methyl methacrylate)(PMMA)copolymers.The PMMA-based random copolymer films(P(MMA-co-MHT)),block copolymer films(PMMA-b-PMHT),and PMMA-based blend films were prepared to investigate the effects of sequential structure,phase separation structure,and modification method on dielectric and energy storage properties of PMMA-based dielectric films.As a result,the random copolymer P(MMA-coMHT)can achieve a maximumε_(r)of 5.8 at 1 kHz owing to the enhanced orientation polarization and electron polarization.Because electron injection and charge transfer are limited by the strong electrostatic attraction ofπ-conjugated benzophenanthrene group analyzed by the density functional theory(DFT),the discharge energy density value of P(MMA-co-PMHT)containing 1 mol%MHT units with the efficiency of 80%reaches15.00 J cm^(-3)at 872 MV m^(-1),which is 165%higher than that of pure PMMA.This study provides a simple and effective way to fabricate the high performance of polymer dielectrics via copolymerization with the monomer of P-type semi-conductive polymer.展开更多
In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd&...In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd<sub>x</sub>O, x = 0, 0.05, 0.10) prepared by solid-state reaction method. XRD spectra confirm the wurtzite hexagonal phase with a grain size distribution of 42 - 47 nm. The FT-IR spectra confirm bonding behavior like Zn-O, O=C=O, and O-H stretching modes. FESEM micrographs show that the grains of crystallites possess nearly spherical morphology. Optical absorption spectra confirm that the optical band gap decreases systematically from 3.19 eV to 3.15 eV for x = 0.0 to x = 0.10 samples. For all samples, PL spectra exhibited near-band emission, blue emission, and green emission peaks. The dielectric constant decreases as the applied frequency increases. Hall effect results show that with increasing doping concentration of Gd, mobility and resistivity increase while bulk concentration decreases. Current-Voltage study shows that current increases when temperature is increased. Rare earth-doped ZnO is potential material used for optoelectronics and spintronics device applications. Properties of Gd-doped ZnO are studied by various research groups, but dielectric studies are limitedly reported. Therefore, the present research work aims to study the change of electrical, optical, and dielectric properties of Gd-doped ZnO for device applications.展开更多
Seagoing vessels are responsible for more than 90%of global freight traffic,but meanwhile,emission pollutants(NO_(x)and SO_(x))of seagoing vessels also cause serious air pollution.Nonthermal plasma(NTP)combined with w...Seagoing vessels are responsible for more than 90%of global freight traffic,but meanwhile,emission pollutants(NO_(x)and SO_(x))of seagoing vessels also cause serious air pollution.Nonthermal plasma(NTP)combined with wet scrubbing technology is considered to be a promising technology.In order to improve the oxidation efficiency and energy efficiency of the NTP reactor,the screw and rod inner electrodes of dielectric barrier discharge(DBD)reactor were investigated.To analyze the mechanism,the optical emission spectra(OES)of NTP were measured and numerical calculation was applied.The experiment results show that the NO oxidation removal efficiency of screw electrode is lower than that of rod electrode.However,the SO_(2)removal efficiency of screw electrode is higher.According to the OES experiment and numerical calculation,the electric field intensity of the screw electrode surface is much higher than that of the rod electrode surface,and it is easier to generate N radicals to form NO.For the same energy density condition,the OH radical generation efficiency of the screw electrode reactor is similar to that of the rod electrode,but the gas temperature in the discharge gap is higher.Therefore,the SO2 oxidation efficiency of the thread electrode is higher.This study provides guidance for the optimization of oxidation efficiency and energy consumption of DBD reactor.展开更多
Internal insulation of high-voltage power modules is facing interesting failure risks,including high temperature overheating,breakdown fault,material cracking etc.,so it is imperative to urgently develop new dielectri...Internal insulation of high-voltage power modules is facing interesting failure risks,including high temperature overheating,breakdown fault,material cracking etc.,so it is imperative to urgently develop new dielectric materials with high thermal conductivity(λ),outstanding electrical insulation,and thermal stability properties.A method to construct controllable liquid crystalline cross-linking networks based on the synthesis of biphenyl epoxy monomer and the change of curing agent structures and curing temperature is proposed.The uniform nematic rod-like liquid crystalline domains were obtained by using 4,4-diaminodiphenylmethane as a curing agent under a pre-curing temperature of 105°C.The resulting film(abbreviated as TD-105)exhibitedλup to 0.53 W m^(-1) K^(-1) and a dielectric breakdown strength of 57.69 kV mm^(-1),which showed a simultaneous enhancement of 178%and 16%,respectively,compared to traditional bisphenol A epoxy resin.Moreover,it also exhibited lower dielectric loss and magnitude of partial discharge while having higher glass-transition temperature(190°C).A novel idea for the development of high-performance epoxy insulating materials for the application of high-voltage and large-power electrical equipment is provided.展开更多
The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotrop...The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotropies to explore the impact of varying concentrations on their properties.We report the sign-reversal of△εin both the nematic and smectic A phases of these mixed liquid crystals,alongside a dual-frequency behaviour across a broad temperature spectrum.Our research further quantifies the influence of mixture ratios under various temperatures and electric field frequencies.This exploration may pave the way for the discovery of new physical phenomena.展开更多
Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced b...Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced by adding expanded microspheres(EM).Then,the thermal conductivity of the system was improved by combining the modified boron nitride(f-BN).The results showed that after the f-BN was added,the dielectric constant and dielectric loss were much lower than those of pure SR.Micron-sized modified boron nitride(f-mBN)improved the dielectric and thermal conductivity of the SR foam better than that of nano-sized modified boron nitride(f-nBN),but f-nBN improved the volume resistivity,tensile strength,and thermal stability of the SR better than f-mBN.When the mass ratio of f-mBN and fnBN is 2:1,the thermal conductivity of the SR foam reaches the maximum value of 0.808 W·m^(-1)·K^(-1),which is 6.5 times that before the addition.The heat release rate and fire growth index are the lowest,and the improvement in flame retardancy is mainly attributed to the high thermal stability and physical barrier of f-BN.展开更多
Saturation magnetization,magneto-crystalline anisotropy field,and dielectric properties are closely related to microwave devices applied at different frequencies.For regulating the magnetic and dielectric properties o...Saturation magnetization,magneto-crystalline anisotropy field,and dielectric properties are closely related to microwave devices applied at different frequencies.For regulating the magnetic and dielectric properties of W-type barium ferrites,single-phase BaMe_(2)Fe_(16)O_(27)(Me=Fe,Mn,Zn,Ni,Co) with different Me ions were synthesized by the high-temperature solid-state method.The saturation magnetization(Ms) range from 47.77 emu/g to 95.34 emu/g and the magnetic anisotropy field(H_a) range from 10700.60 Oe(1 Oe=79.5775 A·m^(-1)) to 13739.57 Oe,depending on the type of cation substitution in the hexagonal lattice.The dielectric permittivity and dielectric loss decrease with increasing frequency of the AC electric field in the low-frequency region,while they almost remain constant in the high-frequency region.The charac teristics of easy regulation and preparation make it a potential candidate for use in microwave device applications.展开更多
We initially look at a non singular universe representation of entropy, based in part on what was brought up by Muller and Lousto. This is a gateway to bringing up information and computational steps (as defined by Se...We initially look at a non singular universe representation of entropy, based in part on what was brought up by Muller and Lousto. This is a gateway to bringing up information and computational steps (as defined by Seth Lloyd) as to what would be available initially due to a modified ZPE formalism. The ZPE formalism is modified as due to Matt Visser’s alternation of k (maximum) ~ 1/(Planck length), with a specific initial density giving rise to initial information content which may permit fixing the initial Planck’s constant, h, which is pivotal to the setting of physical law. The settings of these parameters depend upon NLED.展开更多
Using real fields instead of complex ones, it is suggested here that the fermions are pairs of coupled strings with an internal tension. The interaction between the two coupled strings is due to an exchange mechanism ...Using real fields instead of complex ones, it is suggested here that the fermions are pairs of coupled strings with an internal tension. The interaction between the two coupled strings is due to an exchange mechanism which is proportional to Planck’s constant. This may be the result of two massless bosons (hypergluons) coupled by a preon (prequark) exchange. It also gives a physical explanation to the origin of the Planck constant, and origin of spin.展开更多
In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,...In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,Brookfield viscosity,rheological index,infrared spectrum and dielectric constant test.This paper discusses the changes of asphalt basic indexes,fatigue properties and asphalt components based on dielectric properties under different modifier contents,and analyzes the grey correlation degree between components and asphalt pavement performance indexes.The results show that the optimum content of RCA modifier is 16.7%of the asphalt quality according to the penetration,ductility,softening point,Brockfield viscosity,viscosity temperature curve and fatigue life.In the phase angle-strain curve,there is disorder in the latter part of the curve.According to the strain (ε_(d)) corresponding to the disorder point,a new fatigue failure criterion is proposed and proved.Based on the new asphalt fatigue failure criterion,the fatigue prediction model of asphalt mixture is improved,and the fatigue life predicted by the improved fatigue model is compared with the fatigue life obtained by four-point bending fatigue test.The results show that the proposed new asphalt fatigue failure criterion is reasonable,and the fatigue life predicted by the improved asphalt mixture fatigue prediction model is accurate.The research method of classifying asphalt components based on dielectric properties is simple and effective,and the components have a high correlation with the road performance of base asphalt and modified asphalt.展开更多
The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the...The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the most commonly used SDBD structure for airflow control, with an exposed electrode supplied with sinusoidal AC high voltage, a grounded encapsulated electrode and an additional exposed electrode downstream supplied with DC voltage. The ionic wind velocity and thrust can be significantly improved by increasing DC voltage although the plasma discharge characteristics are virtually unaffected. It is found that the negative charges generated by the discharge of the three-electrode structure accumulate on the dielectric surface significantly further downstream in an AC period compared to the actuator with a two-electrode structure. The negative charges in the downstream region increase as the DC voltage increases.In addition, the DC voltage affects the time required for the positive charge filaments to decay.The positive DC voltage expands the ionic acceleration zone downstream to produce a greater EHD force. The amplitude of the DC voltage affects the electric field on the dielectric surface and is therefore a key factor in the formation of the EHD force. Further research on the surface charge characteristics of a three-electrode structure has been conducted using a pulse power to drive the discharge, and the same conclusions are drawn. This work demonstrates a link between surface charge characteristics and EHD performance of a three-electrode SDBD actuator.展开更多
Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the pres...Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.展开更多
Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean ...Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean plasma photonic crystals(APPCs) by use of dielectric barrier discharges in air. Dynamical control on both the macrostructures including the lattice symmetry and the crystal orientation, and the microstructures including the fine structures of scattering elements has been achieved. The formation mechanisms of APPCs are studied by time-resolved measurements together with numerical simulations. Large omnidirectional band gaps of APPCs have been obtained. The tunable topology of APPCs may offer new opportunities for fabricating multi-functional and highly-integrated microwave devices.展开更多
SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the a...SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the atmosphere,it is not easily degradable and is of great potential harm to the environment.Based on pulsed dielectric barrier discharge plasma technology,the effects of H_(2)O and 0_(2) on the degradation of SF_(6) were studied.Studies have shown that H_(2)O can effectively promote the decomposition of SF_(6) and improve its degradation rate and energy efficiency of degradation.Under the action of a pulse input voltage and input frequency of 15 kV and 15 kHz,respectively,when H_(2)O is added alone the effect of 1% H_(2)O is the best,and the rate and energy efficiency of degradation of SF_(6) reach their maximum values,which are 91.9% and 8.25 g kWh^(-1),respectively.The synergistic effect of H_(2)O and O_(2) on the degradation of SF_(6) was similar to that of H_(2)O.When the concentration of H_(2)O and O_(2) was 1%,the system obtained the best rate and energy efficiency of degradation,namely 89.7% and 8.05 g kWh~(-1),respectively.At the same time,different external gases exhibit different capabilities to regulate decomposition products.The addition of H_(2)O can effectively improve the selectivity of S0_(2).Under the synergistic effect of H_(2)O and O_(2),with increase in O_(2) concentration the degradation products gradually transformed into SO_(2)F_(2).From the perspective of harmless treatment of the degradation products of SF_(6),the addition of O_(2) during the SF_(6) degradation process should be avoided.展开更多
基金intellectually led by the Battery Materials Research program under the Assistant Secretary for Energy Efficiency and Renewable Energy,Office of Vehicle Technologies of the U.S.Department of Energy,Contract DE-AC0205CH11231supported by the Joint Center for Energy Storage Research,an Energy Innovation Hub funded by the U.S.Department of Energy
文摘We report the dielectric constant of 1 M LiPF_(6)in EC:EMC 3∶7 w/w(ethylene carbonate/ethyl methyl carbonate)in addition to neat EC:EMC 3∶7 w/w.Using three Debye relaxations,the static permittivity value,or dielectric constant,is extrapolated to 18.5,which is compared to 18.7 for the neat solvent mixture.The EC solvent is found to strongly coordinate with the Li^(+)cations of the salt,which results in a loss of dielectric contribution to the electrolyte.However,the small amplitude and large uncertainty in relaxation frequency for EMC cloud definitive identification of the Li^(+)solvation shell.Importantly,the loss of the free EC permittivity contribution due to Li^(+)solvation is almost completely balanced by the positive contribution of the associated LiPF_(6)salt,demonstrating that a significant quantity of dipolar ion pairs exists in 1 M LiPF_(6)in EC:EMC 3∶7.
基金the Innovation Program of the Shanghai Municipal Education Commission(2019-01-07-00-02-E00061)the Shanghai Municipal Science and Technology Commission(21520761100).
文摘The evolution of electronic communication technology raises higher requirements for low dielectric constant(low-k)materials.For this,a benzoxazine functional organosilicon(HP-aptes)with dense Si—O—Si crosslinking networks and large sterically hindered tert-butyl groups was prepared by the sol–gel method.Then,a series of polybenzoxazine composites(PPHP)were prepared from intrinsically low dielectric constant bis-functional benzoxazine monomer(P-aptmds)and HP-aptes.The double crosslinking networks of polybenzoxazine and organosilicon further increased the crosslinking density and decreased the dipole density of composites,which endowed the composites with enhanced low-k properties.When the content of HP-aptes is 30%(mass),the crosslinking density was 2.05×10^(-3)mol·cm^(-3),while that of PP-aptmds was 3.31×10^(-3)mol·cm^(-3).In addition,the dielectric constant and dielectric loss of PPHP composite at 1 MHz could reach 2.61 and 0.0056,respectively.
基金the funding support from National Natural Science Foundation of China(Grant No.42307243)Henan Province Science and Technology Research Project(Grant No.232102321102)Shanxi Provincial Key Research and Development Project(Grant No.202102090301009).
文摘This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-directional shear consists of a static shear consolidation and subsequent shear under constant vertical stress and constant volume conditions.A side wall node loading method is used to exert bi-directional shear of various angles.The results show that bi-directional shear can significantly influence the mechanical behaviour of granular materials.However,the relationship between bidirectional shear and mechanical responses relies on loading conditions,i.e.constant vertical stress or constant volume conditions.The stress states induced by static shear consolidation are affected by loading angles,which are enlarged by subsequent shear,consistent with the relationship between bidirectional shear and principal stresses.It provides evidence for the dissipation of stresses accompanying static liquefaction of granular materials.The presence of bi-directional principal stress rotation(PSR)is demonstrated,which evidences why the bi-directional shear of loading angles with components in two directions results in faster dissipations of stresses with static liquefaction.Contant volume shearing leads to cross-anisotropic stress and fabric at micro-contacts,but constant vertical stress shearing leads to complete anisotropic stress and fabric at micro-contacts.It explains the differentiating relationship between stress-strain responses and fabric anisotropy under these two conditions.Micromechanical signatures such as the slip state of micro-contacts and coordination number are also examined,providing further insights into understanding granular behaviour under bi-directional shear.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62175154)the Shanghai Pujiang Program(20PJ1411900)+2 种基金the Shanghai Science and Technology Program(21ZR1445500)the Shanghai Yangfan Program(22YF1430200)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘Real-world passive radiative cooling requires highly emissive,selective,and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the net cooling power.Despite various selective thermal emitters have been demonstrated,it is still challenging to achieve these conditions sim-ultaneously because of the extreme difficulty in controlling thermal emission of photonic structures in multidimension.Here we demonstrated hybrid polar dielectric metasurface thermal emitters with machine learning inverse design,en-abling a high emissivity of~0.92 within the atmospheric transparency window 8-13μm,a large spectral selectivity of~1.8 and a wide emission angle up to 80 degrees,simultaneously.This selective and omnidirectional thermal emitter has led to a new record of temperature reduction as large as~15.4°C under strong solar irradiation of~800 W/m2,signific-antly surpassing the state-of-the-art results.The designed structures also show great potential in tackling the urban heat island effect,with modelling results suggesting a large energy saving and deployment area reduction.This research will make significant impact on passive radiative cooling,thermal energy photonics and tackling global climate change.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.
基金supported by National Natural Science Foundation of China(Nos.52037004 and 52177148)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_1449).
文摘Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity.In this work,the uniformity and discharge characteristics of the nanosecond(ns)pulsed DBD with dielectric barrier layers made of alumina,quartz glass,polycarbonate(PC),and polypropylene(PP)are investigated via discharge image observation,voltage-current waveform measurement and optical emission spectral diagnosis.Through analyzing discharge image by gray value standard deviation method,the discharge uniformity is quantitatively calculated.The effects of the space electric field intensity,the electron density(Ne),and the space reactive species on the uniformity are studied with quantifying the gap voltage Ug and the discharge current Ig,analyzing the recorded optical emission spectra,and simulating the temporal distribution of Ne with a one-dimensional fluid model.It is found that as the relative permittivity of the dielectric materials increases,the space electric field intensity is enhanced,which results in a higher Ne and electron temperature(Te).Therefore,an appropriate value of space electric field intensity can promote electron avalanches,resulting in uniform and stable plasma by the merging of electron avalanches.However,an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field,which reduce the discharge uniformity.The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity.The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity,and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform,stable,and reactive plasma sources.
基金the funding of National Key R&D Program of China(No.2020YFA0711700)Hunan National Natural Science Foundation(2021JJ30652)+3 种基金National Natural Science Foundation of China(52002404)Natural Science Foundation of Guangdong Province(2020A1515011198)Characteristic Innovation Projects of Colleges and Universities in Guangdong Province(2020KT SCX081)State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China
文摘How to achieve synergistic improvement of permittivity(ε_(r))and breakdown strength(E_(b))is a huge challenge for polymer dielectrics.Here,for the first time,theπ-conjugated comonomer(MHT)can simultaneously promote theε_(r)and E_(b)of linear poly(methyl methacrylate)(PMMA)copolymers.The PMMA-based random copolymer films(P(MMA-co-MHT)),block copolymer films(PMMA-b-PMHT),and PMMA-based blend films were prepared to investigate the effects of sequential structure,phase separation structure,and modification method on dielectric and energy storage properties of PMMA-based dielectric films.As a result,the random copolymer P(MMA-coMHT)can achieve a maximumε_(r)of 5.8 at 1 kHz owing to the enhanced orientation polarization and electron polarization.Because electron injection and charge transfer are limited by the strong electrostatic attraction ofπ-conjugated benzophenanthrene group analyzed by the density functional theory(DFT),the discharge energy density value of P(MMA-co-PMHT)containing 1 mol%MHT units with the efficiency of 80%reaches15.00 J cm^(-3)at 872 MV m^(-1),which is 165%higher than that of pure PMMA.This study provides a simple and effective way to fabricate the high performance of polymer dielectrics via copolymerization with the monomer of P-type semi-conductive polymer.
文摘In this manuscript, we are reporting structural, bonding, optical, dielectric, and electrical properties of Gd-doped ZnO composite samples (Zn<sub>1</sub><sub>−</sub><sub>x</sub>Gd<sub>x</sub>O, x = 0, 0.05, 0.10) prepared by solid-state reaction method. XRD spectra confirm the wurtzite hexagonal phase with a grain size distribution of 42 - 47 nm. The FT-IR spectra confirm bonding behavior like Zn-O, O=C=O, and O-H stretching modes. FESEM micrographs show that the grains of crystallites possess nearly spherical morphology. Optical absorption spectra confirm that the optical band gap decreases systematically from 3.19 eV to 3.15 eV for x = 0.0 to x = 0.10 samples. For all samples, PL spectra exhibited near-band emission, blue emission, and green emission peaks. The dielectric constant decreases as the applied frequency increases. Hall effect results show that with increasing doping concentration of Gd, mobility and resistivity increase while bulk concentration decreases. Current-Voltage study shows that current increases when temperature is increased. Rare earth-doped ZnO is potential material used for optoelectronics and spintronics device applications. Properties of Gd-doped ZnO are studied by various research groups, but dielectric studies are limitedly reported. Therefore, the present research work aims to study the change of electrical, optical, and dielectric properties of Gd-doped ZnO for device applications.
基金supported by National Natural Science Foundation of China(No.52301382)the Natural Science Foundation of Hubei Province(No.2022CFB730)Automotive Components Technology of Hubei Collaborative Innovation Project(No.2015XTZX0406)。
文摘Seagoing vessels are responsible for more than 90%of global freight traffic,but meanwhile,emission pollutants(NO_(x)and SO_(x))of seagoing vessels also cause serious air pollution.Nonthermal plasma(NTP)combined with wet scrubbing technology is considered to be a promising technology.In order to improve the oxidation efficiency and energy efficiency of the NTP reactor,the screw and rod inner electrodes of dielectric barrier discharge(DBD)reactor were investigated.To analyze the mechanism,the optical emission spectra(OES)of NTP were measured and numerical calculation was applied.The experiment results show that the NO oxidation removal efficiency of screw electrode is lower than that of rod electrode.However,the SO_(2)removal efficiency of screw electrode is higher.According to the OES experiment and numerical calculation,the electric field intensity of the screw electrode surface is much higher than that of the rod electrode surface,and it is easier to generate N radicals to form NO.For the same energy density condition,the OH radical generation efficiency of the screw electrode reactor is similar to that of the rod electrode,but the gas temperature in the discharge gap is higher.Therefore,the SO2 oxidation efficiency of the thread electrode is higher.This study provides guidance for the optimization of oxidation efficiency and energy consumption of DBD reactor.
基金National Natural Science Foundation of China,Grant/Award Number:52307028The State Key Laboratory of Electrical Insulation and Power Equipment Open Project,Grant/Award Number:EIPE22210+1 种基金Shaanxi Provincial Science and Technology Department Youth Foundation,Grant/Award Number:2022JQ-300Shaanxi Province Industry-University-Research Collaborative Innovation Plan,Grant/Award Number:2023YFBT-45-02。
文摘Internal insulation of high-voltage power modules is facing interesting failure risks,including high temperature overheating,breakdown fault,material cracking etc.,so it is imperative to urgently develop new dielectric materials with high thermal conductivity(λ),outstanding electrical insulation,and thermal stability properties.A method to construct controllable liquid crystalline cross-linking networks based on the synthesis of biphenyl epoxy monomer and the change of curing agent structures and curing temperature is proposed.The uniform nematic rod-like liquid crystalline domains were obtained by using 4,4-diaminodiphenylmethane as a curing agent under a pre-curing temperature of 105°C.The resulting film(abbreviated as TD-105)exhibitedλup to 0.53 W m^(-1) K^(-1) and a dielectric breakdown strength of 57.69 kV mm^(-1),which showed a simultaneous enhancement of 178%and 16%,respectively,compared to traditional bisphenol A epoxy resin.Moreover,it also exhibited lower dielectric loss and magnitude of partial discharge while having higher glass-transition temperature(190°C).A novel idea for the development of high-performance epoxy insulating materials for the application of high-voltage and large-power electrical equipment is provided.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1405000)the National Natural Science Foundation of China (Grant No.62375141)+1 种基金the Natural Science Foundation of Jiangsu Province,Major Project (Grant No.BK20212004)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos.NY222122 and NY222105)。
文摘The modulation of dielectric anisotropy(△ε)is pivotal for elucidating molecular interactions and directing the alignment of liquid crystals.In this study,we combine liquid crystals with opposing dielectric anisotropies to explore the impact of varying concentrations on their properties.We report the sign-reversal of△εin both the nematic and smectic A phases of these mixed liquid crystals,alongside a dual-frequency behaviour across a broad temperature spectrum.Our research further quantifies the influence of mixture ratios under various temperatures and electric field frequencies.This exploration may pave the way for the discovery of new physical phenomena.
基金supported by the Natural Science Foundation of Anhui Province(2108085QE211)National Natural Science Foundation of China(22205229)Science Foundation of China University of Petroleum,Beijing(2462024QNXZ001).
文摘Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced by adding expanded microspheres(EM).Then,the thermal conductivity of the system was improved by combining the modified boron nitride(f-BN).The results showed that after the f-BN was added,the dielectric constant and dielectric loss were much lower than those of pure SR.Micron-sized modified boron nitride(f-mBN)improved the dielectric and thermal conductivity of the SR foam better than that of nano-sized modified boron nitride(f-nBN),but f-nBN improved the volume resistivity,tensile strength,and thermal stability of the SR better than f-mBN.When the mass ratio of f-mBN and fnBN is 2:1,the thermal conductivity of the SR foam reaches the maximum value of 0.808 W·m^(-1)·K^(-1),which is 6.5 times that before the addition.The heat release rate and fire growth index are the lowest,and the improvement in flame retardancy is mainly attributed to the high thermal stability and physical barrier of f-BN.
基金Project supported by the National Natural Science Foundation of China (Grant No. 52088101)the Kunpeng Plan of Zhejiang ProvinceNingbo Top Talent Program。
文摘Saturation magnetization,magneto-crystalline anisotropy field,and dielectric properties are closely related to microwave devices applied at different frequencies.For regulating the magnetic and dielectric properties of W-type barium ferrites,single-phase BaMe_(2)Fe_(16)O_(27)(Me=Fe,Mn,Zn,Ni,Co) with different Me ions were synthesized by the high-temperature solid-state method.The saturation magnetization(Ms) range from 47.77 emu/g to 95.34 emu/g and the magnetic anisotropy field(H_a) range from 10700.60 Oe(1 Oe=79.5775 A·m^(-1)) to 13739.57 Oe,depending on the type of cation substitution in the hexagonal lattice.The dielectric permittivity and dielectric loss decrease with increasing frequency of the AC electric field in the low-frequency region,while they almost remain constant in the high-frequency region.The charac teristics of easy regulation and preparation make it a potential candidate for use in microwave device applications.
文摘We initially look at a non singular universe representation of entropy, based in part on what was brought up by Muller and Lousto. This is a gateway to bringing up information and computational steps (as defined by Seth Lloyd) as to what would be available initially due to a modified ZPE formalism. The ZPE formalism is modified as due to Matt Visser’s alternation of k (maximum) ~ 1/(Planck length), with a specific initial density giving rise to initial information content which may permit fixing the initial Planck’s constant, h, which is pivotal to the setting of physical law. The settings of these parameters depend upon NLED.
文摘Using real fields instead of complex ones, it is suggested here that the fermions are pairs of coupled strings with an internal tension. The interaction between the two coupled strings is due to an exchange mechanism which is proportional to Planck’s constant. This may be the result of two massless bosons (hypergluons) coupled by a preon (prequark) exchange. It also gives a physical explanation to the origin of the Planck constant, and origin of spin.
基金Funded by Natural Science Foundation of Inner Mongolia,China (No. 2019MS05033)。
文摘In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,Brookfield viscosity,rheological index,infrared spectrum and dielectric constant test.This paper discusses the changes of asphalt basic indexes,fatigue properties and asphalt components based on dielectric properties under different modifier contents,and analyzes the grey correlation degree between components and asphalt pavement performance indexes.The results show that the optimum content of RCA modifier is 16.7%of the asphalt quality according to the penetration,ductility,softening point,Brockfield viscosity,viscosity temperature curve and fatigue life.In the phase angle-strain curve,there is disorder in the latter part of the curve.According to the strain (ε_(d)) corresponding to the disorder point,a new fatigue failure criterion is proposed and proved.Based on the new asphalt fatigue failure criterion,the fatigue prediction model of asphalt mixture is improved,and the fatigue life predicted by the improved fatigue model is compared with the fatigue life obtained by four-point bending fatigue test.The results show that the proposed new asphalt fatigue failure criterion is reasonable,and the fatigue life predicted by the improved asphalt mixture fatigue prediction model is accurate.The research method of classifying asphalt components based on dielectric properties is simple and effective,and the components have a high correlation with the road performance of base asphalt and modified asphalt.
基金supported by National Natural Science Foundation of China (Nos. 51777026 and 11705075)。
文摘The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the most commonly used SDBD structure for airflow control, with an exposed electrode supplied with sinusoidal AC high voltage, a grounded encapsulated electrode and an additional exposed electrode downstream supplied with DC voltage. The ionic wind velocity and thrust can be significantly improved by increasing DC voltage although the plasma discharge characteristics are virtually unaffected. It is found that the negative charges generated by the discharge of the three-electrode structure accumulate on the dielectric surface significantly further downstream in an AC period compared to the actuator with a two-electrode structure. The negative charges in the downstream region increase as the DC voltage increases.In addition, the DC voltage affects the time required for the positive charge filaments to decay.The positive DC voltage expands the ionic acceleration zone downstream to produce a greater EHD force. The amplitude of the DC voltage affects the electric field on the dielectric surface and is therefore a key factor in the formation of the EHD force. Further research on the surface charge characteristics of a three-electrode structure has been conducted using a pulse power to drive the discharge, and the same conclusions are drawn. This work demonstrates a link between surface charge characteristics and EHD performance of a three-electrode SDBD actuator.
基金supported by the Science and Technology Development Fund,Macao SAR(File no.FDCT-0082/2021/A2,0010/2022/AMJ,006/2022/ALC)UM's research fund(File no.MYRG2022-00241-IAPME,MYRGCRG2022-00009-FHS)+2 种基金the research fund from Wuyi University(EF38/IAPME-XGC/2022/WYU)the Natural Science Foundation of China(61935017,62175268)Science,Technology and Innovation Commission of Shenzhen Municipality(Project Nos.JCYJ20220530113015035,JCYJ20210324120204011,and KQTD2015071710313656).
文摘Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.
基金supported by National Natural Science Foundation of China(Nos.12275065 and 11975089)Natural Science Foundation of Hebei Province(Nos.A2021201010 and A2021201003)+4 种基金Interdisciplinary Research Program of Natural Science of Hebei University(No.DXK202108)Hebei Provincial Central Government Guiding Local Science and Technology Development Funds(No.236Z1501G)Scientific Research and Innovation Team Foundation of Hebei University(No.IT2023B03)The Excellent Youth Research Innovation Team of Hebei University(No.QNTD202402)Regional Key Projects of National Natural Science Foundation of China(No.U23A20678).
文摘Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean plasma photonic crystals(APPCs) by use of dielectric barrier discharges in air. Dynamical control on both the macrostructures including the lattice symmetry and the crystal orientation, and the microstructures including the fine structures of scattering elements has been achieved. The formation mechanisms of APPCs are studied by time-resolved measurements together with numerical simulations. Large omnidirectional band gaps of APPCs have been obtained. The tunable topology of APPCs may offer new opportunities for fabricating multi-functional and highly-integrated microwave devices.
基金supported by Guizhou Province (Ceneral), grant/award number Qian Ke He Zhi Cheng [2022] General 207, National Natural Science Foundation of China (No. 52307170)Natural Science Foundation of Hubei Province, China (No. 2023AFB382)。
文摘SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the atmosphere,it is not easily degradable and is of great potential harm to the environment.Based on pulsed dielectric barrier discharge plasma technology,the effects of H_(2)O and 0_(2) on the degradation of SF_(6) were studied.Studies have shown that H_(2)O can effectively promote the decomposition of SF_(6) and improve its degradation rate and energy efficiency of degradation.Under the action of a pulse input voltage and input frequency of 15 kV and 15 kHz,respectively,when H_(2)O is added alone the effect of 1% H_(2)O is the best,and the rate and energy efficiency of degradation of SF_(6) reach their maximum values,which are 91.9% and 8.25 g kWh^(-1),respectively.The synergistic effect of H_(2)O and O_(2) on the degradation of SF_(6) was similar to that of H_(2)O.When the concentration of H_(2)O and O_(2) was 1%,the system obtained the best rate and energy efficiency of degradation,namely 89.7% and 8.05 g kWh~(-1),respectively.At the same time,different external gases exhibit different capabilities to regulate decomposition products.The addition of H_(2)O can effectively improve the selectivity of S0_(2).Under the synergistic effect of H_(2)O and O_(2),with increase in O_(2) concentration the degradation products gradually transformed into SO_(2)F_(2).From the perspective of harmless treatment of the degradation products of SF_(6),the addition of O_(2) during the SF_(6) degradation process should be avoided.