期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization of particulate matter from diesel passenger cars tested on chassis dynamometers 被引量:4
1
作者 Sungwoon Jung Jaehyun Lim +4 位作者 Sangil Kwon Sangwoo Jeon Jeongsoo Kim Jongtae Lee Sunmoon Kim 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第4期21-32,共12页
Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter(DPF), diesel oxidation catalyst(DOC)and exhaust gas recirculation(EGR... Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter(DPF), diesel oxidation catalyst(DOC)and exhaust gas recirculation(EGR) under the vehicle driving cycles and regulatory cycle.Total particle number emissions(PNEs) decreased gradually during speed-up of vehicle from 17.3 to 97.3 km/hr. As the average vehicle speed increases, the size-segregated peak of particle number concentration shifts to smaller size ranges of particles. The correlation analysis with various particulate components such as particle number concentration(PNC),ultrafine particle number concentration(UFPNC) and particulate matter(PM) mass was conducted to compare gaseous compounds(CO, CO2, HC and NOx). The UFPNC and PM were not only emitted highly in Seoul during severe traffic jam conditions, but also have good correlation with hydrocarbons and NOxinfluencing high potential on secondary aerosol generation. The effect of the dilution temperature on total PNC under the New European Driving Cycle(NEDC), was slightly higher than the dilution ratio. In addition, the nuclei mode(DP: ≤ 13 nm) was confirmed to be more sensitive to the dilution temperature rather than other particle size ranges. Comparison with particle composition between vehicle speed cycles and regulatory cycle showed that sulfate was slightly increased at regulatory cycle, while other components were relatively similar. During cold start test, semivolatile nucleation particles were increased due to effect of cold environment. Research on particle formation dependent on dilution conditions of diesel passenger cars under the NEDC is important to verify impact on vehicular traffic and secondary aerosol formation in Seoul. 展开更多
关键词 diesel passenger cars Particle number emissions Correlation analysis Particle number concentration Ultrafine particle number concentration
原文传递
Performance Development Target Setting of Passenger Car Diesel Engine
2
作者 ZHENG Guangyong YU Xiumin +2 位作者 LIU Jiangwei SONG Tao LI Wenxiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期512-517,共6页
Setting engine emission targets to meet diesel car requirements is particularly important in engine performance development phase. Many researches are focused on associating vehicle performance with engine targets, bu... Setting engine emission targets to meet diesel car requirements is particularly important in engine performance development phase. Many researches are focused on associating vehicle performance with engine targets, but most work is done by testing, which is time and cost consuming, furthermore, the relationship of vehicle and engine will change when either engine or vehicle changes. A GT-Drive model to simulate New European Driving Cycle (NEDC) for passenger car is developed and calibrated by testing data, model precision is controlled within 5%. Time distribution of engine operating conditions when car running NEDC cycle has been analyzed, 10 critical major engine operating points are summarized according to running time proportion. Emission of NOx and smoke control regions containing these 10 points for target engine are set. Vehicle emissions are simulated and evaluated during engine development after engine performance test data are got, and engine combustion system layout and calibration are adjusted until vehicle targets are met. Vehicle is tested in chassis dynamometer finally, the testing results show a good agreement with the simulated results with an error of less than 5%, which proves that the emission value exchange of vehicle and engine is reliable. Performance target decomposition method for passenger car diesel presented can greatly shorten the development cycle and save costs. 展开更多
关键词 passenger car diesel engine emission target New European Driving Cycle simulation analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部