期刊文献+
共找到818篇文章
< 1 2 41 >
每页显示 20 50 100
Comparative Study of Performances of a Single-Cylinder Diesel Enginefueled with Pure Diesel and Blends of Biodiesels/Pure Diesel
1
作者 H. Mbanza Dinganga Y. Tuakashikila Muamba +4 位作者 C. Tumuinimo Mambote A. Malumba Mukaya J. Lami Nzunzu V. Sumuna Temo H. Mbuyi Katshiatshia 《Energy and Power Engineering》 2021年第3期111-125,共15页
In this study, the principal objective is to compare the performances of an air<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">cooled one cylinder, f... In this study, the principal objective is to compare the performances of an air<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">cooled one cylinder, four</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">stroke direct injection diesel engine using the blends (5% by volume B5, 10% by volume B10) of diesel and biodiesels derived respectively from palm oil, castor oil and raphia sese De Wild oil with pure diesel. All the biodiesels used in this work come from the plant species of the democratic republic of Congo as listed above. The engine performances (power, torque and brake specific consumption)</span><span> </span><span style="font-family:Verdana;">at different engine speeds were determined at both full and partial loads. According to experimental results, the increments in the power output and torque when the mixtures of diesel and biodiesels were used</span><span style="font-family:Verdana;"> and</span><span> </span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> observed. </span><span style="font-family:Verdana;">On</span><span style="font-family:Verdana;"> the other side, the specific fuel consumption of the mixtures is higher than that of pure diesel</span><span> </span><span style="font-family:Verdana;">although the calculated lower heating values </span><span style="font-family:Verdana;">are almost within the same range</span><span style="font-family:Verdana;"> for the all studied fuels. Finally, in partial load 1/1, pure diesel blended with biodiesels B5 derived from castor oil presented high specific brake consumption values compared to the other fuels while B10 from the same oil presents low brake specific consumption values for power greater than 3</span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;">2 kW.</span> 展开更多
关键词 Diesel Monocylinder Engine PERFORMANCES Biodiesels-Gasoil Blends
下载PDF
A reduced combustion mechanism of ammonia/diesel optimized with multi-objective genetic algorithm
2
作者 Wanchen Sun Shaodian Lin +4 位作者 Hao Zhang Liang Guo Wenpeng Zeng Genan Zhu Mengqi Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期187-200,共14页
For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based ... For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios. 展开更多
关键词 AMMONIA DIESEL COMBUSTION Kinetic mechanism Multi-objective optimization
下载PDF
Evaluation of the Oxidation Reactivity and Behavior of Exhaust Soot Particles from Diesel Engines with Different Emission Levels
3
作者 Wang Yajun Lin Lei +3 位作者 Xing Jianqiang LüXu Yang He Song Haiqing 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期72-80,共9页
The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were coll... The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102. 展开更多
关键词 diesel engine soot particles oxidation reactivity oxidation behavior
下载PDF
A Study of the Effect of the Miller Cycle on the Combustion of a Supercharged Marine Diesel Engine
4
作者 Lingjie Zhao Cong Li 《Energy Engineering》 EI 2024年第5期1363-1380,共18页
The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder,thereby reducing NOx emissions.To effectively investigate ... The Miller cycle is a program that effectively reduces NOx emissions from marine diesel engines by lowering the maximum combustion temperature in the cylinder,thereby reducing NOx emissions.To effectively investigate the impact of Miller cycle optimum combustion performance and emission capability under high load conditions,this study will perform a one-dimensional simulation of the performance of a marine diesel engine,as well as a threedimensional simulation of the combustion in the cylinder.A 6-cylinder four-stroke single-stage supercharged diesel engine is taken as the research object.The chassis dynamometer and other related equipment are used to build the test system,carry out the diesel engine bench test,and collect experimental data.The simulation results are compared with the test results,and the error is less than 5%.In this study,the authors will use simulation software to simulate several Miller cycle scenarios designed for early inlet valve closure and analyze the impact of the Miller cycle on combustion and emissions at 100%load conditions.By comparing the flow field distribution of the engine at 1500 r/min condition,it was found that proper EIVC can prolong the ignition latency period and homogeneous fuel-air mixture combustion acceleration,but it can reduce pressure and temperature within the piston chamber and NOx emission.However,the Miller cycle reduces end-of-compression temperatures,which increases combustion duration and exhaust temperatures,making it difficult to improve fuel economy at the optimum fuel consumption point,and closing the intake valves prematurely leads to excessive fuel expenditure.Furthermore,temperature and heat release rate within the piston chamber,NOx,and SOOT generation were significantly enhanced. 展开更多
关键词 Miller cycle EIVC COMBUSTION NOx emissions marine diesel
下载PDF
Efficient simultaneous removal of diesel particulate matter and hydrocarbons from diesel exhaust gas at low temperatures over Cu–CeO_(2)/Al_(2)O_(3) coupling with dielectric barrier discharge plasma
5
作者 任保勇 方世玉 +7 位作者 张甜甜 孙燕 高尔豪 李晶 吴祖良 朱佳丽 王伟 姚水良 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期100-109,共10页
Diesel particulate matter(DPM)and hydrocarbons(HCs)emitted from diesel engines have a negative affect on air quality and human health.Catalysts for oxidative removal of DPM and HCs are currently used universally but t... Diesel particulate matter(DPM)and hydrocarbons(HCs)emitted from diesel engines have a negative affect on air quality and human health.Catalysts for oxidative removal of DPM and HCs are currently used universally but their low removal efficiency at low temperatures is a problem.In this study,Cu-doped CeO_(2) loaded on Al_(2)O_(3) coupled with plasma was used to enhance low-temperature oxidation of DPM and HCs.Removals of DPM and HCs at 200℃ using the catalyst were as high as 90%with plasma but below 30%without plasma.Operando plasma diffuse reflectance infrared Fourier transform spectroscopy coupled with mass spectrometry was conducted to reveal the functional mechanism of the oxygen species in the DPM oxidation process.It was found that Cu-CeO_(2) can promote the formation of adsorbed oxygen(M^(+)-O_(2)^(-))and terminal oxygen(M=O),which can react with DPM to form carbonates that are easily converted to gaseous CO_(2).Our results provide a practical plasma catalysis technology to obtain simultaneous removals of DPM and HCs at low temperatures.M+O-2Diesel particulate matter(DPM)and hydrocarbons(HCs)emitted from diesel engines have a negative affect on air quality and human health.Catalysts for oxidative removal of DPM and HCs are currently used universally but their low removal efficiency at low temperatures is a problem.In this study,Cu-doped CeO_(2) loaded on Al_(2)O_(3) coupled with plasma was used to enhance low-temperature oxidation of DPM and HCs.Removals of DPM and HCs at 200°C using the catalyst were as high as 90%with plasma but below 30%without plasma.Operando plasma diffuse reflectance infrared Fourier transform spectroscopy coupled with mass spectrometry was conducted to reveal the functional mechanism of the oxygen species in the DPM oxidation process.It was found that Cu–CeO_(2) can promote the formation of adsorbed oxygen(–)and terminal oxygen(M=O),which can react with DPM to form carbonates that are easily converted to gaseous CO_(2).Our results provide a practical plasma catalysis technology to obtain simultaneous removals of DPM and HCs at low temperatures. 展开更多
关键词 diesel PM plasma catalysis Cu-CeO_(2)/Al_(2)O_(3) DRIFTS-MS synergy effect
下载PDF
The Future Trend of E-Mobility in Terms of Battery Electric Vehicles and Their Impact on Climate Change: A Case Study Applied in Hungary
6
作者 Mohamad Ali Saleh Saleh 《American Journal of Climate Change》 2024年第2期83-102,共20页
The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term ... The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs). 展开更多
关键词 Battery Electric Vehicles (BEVS) GASOLINE DIESEL Hybrid Electric Vehicles (HEVs) Plug-In Hybrid Vehicles (PHEVs) Climate Change Carbon Dioxide (CO2) Emissions
下载PDF
Optimization of Diesel and Crude Oil Degradation in a Ghanaian Soil Using Organic Wastes as Amendment
7
作者 Adama Sawadogo Innocent Yao Dotse Lawson +2 位作者 Hama Cissé Cheikna Zongo Aly Savadogo 《Journal of Agricultural Chemistry and Environment》 2024年第1期1-12,共12页
Soil contamination by hydrocarbons poses numerous environmental, health and agricultural problems. The degradation of these pollutants can occur naturally but very slowly. It is therefore generally necessary to stimul... Soil contamination by hydrocarbons poses numerous environmental, health and agricultural problems. The degradation of these pollutants can occur naturally but very slowly. It is therefore generally necessary to stimulate this degradation by different means. Thus, this study aimed to improve the bio-degradation of diesel and crude oil in a Ghanaian soil by biostimulation. For this, the sampled soil was characterized by standard methods and contaminated with diesel and crude oil at a proportion of 1% (w/w). Then, contaminated soil samples were supplemented with biochar-compost, poultry manure or cow dung at the proportion of 10% (w/w). Periodically, fractions of these samples were taken to evaluate the density of hydrocarbon utilizing bacteria (HUB) and the residual quantities of diesel or crude oil. The characteristics of the soil used show the need for supplementation for better degradation of hydrocarbons. The results of the study show that supplementing the soil with organic substrates increases HUB loads in soils contaminated by diesel and crude oil. They also show that the residual quantities of diesel and crude oil are generally significantly lower in supplemented soils (p = 0.048 and p < 0.0001 respectively). In addition, the study shows that degradation was generally greater in soils contaminated by diesel compared to those contaminated by crude oil, especially at the end of the study. 展开更多
关键词 BIODEGRADATION BIOSTIMULATION SOIL DIESEL Crude Oil Organic Amendment Ghana
下载PDF
Past, Present and Future: A Role for Liquid Biofuels in Transitioning to Net Zero?
8
作者 David Michael Mousdale 《Natural Resources》 2024年第5期107-124,共18页
Over the last decade, the uptake rate of first-generation biofuels (ethanol and biodiesel) has decelerated as low blend limits have increased only slowly and extreme volatility in oil prices has limited investment in ... Over the last decade, the uptake rate of first-generation biofuels (ethanol and biodiesel) has decelerated as low blend limits have increased only slowly and extreme volatility in oil prices has limited investment in biofuels production infrastructure. Concerns over the environmental impacts of large-scale biofuels production combined with tariff barriers have greatly restricted the global trade in biofuels. First-generation biofuels produced either by fermentation of sugars from maize or sugarcane (ethanol) or transesterification of triglycerides (biodiesel) presently contribute less than 4% of terrestrial transportation fuel demand and techno-economic modelling foresees this only slowly increasing by 2035. With internal combustion and diesel engines widely anticipated as being phased out in favour of electric power for motor vehicles, a much-reduced market demand for biofuels is likely if global demand for all liquid fuels declines by 2050. However, second-generation, thermochemically produced and biomass-derived fuels (renewable diesel, marine oils and sustainable aviation fuel) have much higher blend limits;combined with policies to decarbonise the aviation and marine industries, major new markets for these products in terrestrial, marine and aviation sectors may emerge in the second half of the 21st century. 展开更多
关键词 Biofuels ETHANOL BIODIESEL Renewable Diesel Sustainable Aviation Fuel Biomass
下载PDF
Performance, Combustion and Emission Characteristics of Oxygenated Diesel in DI Engines: A Critical Review
9
作者 Joseph Lungu Lennox Siwale Rudolph Joe Kashinga 《Journal of Power and Energy Engineering》 2024年第6期16-49,共34页
The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofu... The transition from non-renewable to renewable energy sources is a significant challenge of our time. In the fuel industry, oxygenated additives such as butanol are transforming conventional fuels into renewable biofuels. This technology has been utilized in reciprocating engines for decades. This paper reviews the viability of using an n-butanol blend as a short-term replacement for diesel by analyzing its physical and chemical properties, combustion, performance, and emission characteristics in compression ignition (CI) engines under various conditions, including variable load, speed, acceleration, and both stationary and transient cycles. N-Butanol exhibits higher viscosity, better lubricity, higher heating value, improved blend stability, enhanced cold-flow properties, and higher density. These factors influence spray formation, injection timing, atomization, and combustion characteristics. Its higher oxygen content improves the diffusion combustion stage and efficiency. Adding 5% and 10% n-butanol to diesel increases pressure and apparent heat release rate, slightly reduces temperature, and improves thermal efficiency, with mixed effects on CO and THC emissions and a notable decrease in particulate matter emissions. Fuel consumption increases, while the impact on NOx emissions varies. A 10% butanol blend is considered optimal for enhancing performance and reducing particulate emissions without significantly affecting NOx emissions. Blending up to 40% butanol with diesel does not require engine modifications or ECU recalibrations in engines calibrated for pure diesel. Due to its advantageous properties and performance, n-butanol is recommended as a superior alcohol-diesel blend than ethanol for short-term diesel replacement. 展开更多
关键词 Diesel Engine Alcohol Additives N-BUTANOL Combustion and Properties
下载PDF
Time-frequency Feature Extraction Method of the Multi-Source Shock Signal Based on Improved VMD and Bilateral Adaptive Laplace Wavelet 被引量:2
10
作者 Nanyang Zhao Jinjie Zhang +2 位作者 Zhiwei Mao Zhinong Jiang He Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期166-179,共14页
Vibration signals have the characteristics of multi-source strong shock coupling and strong noise interference owing to the complex structure of reciprocating machinery.Therefore,it is difficult to extract,analyze,and... Vibration signals have the characteristics of multi-source strong shock coupling and strong noise interference owing to the complex structure of reciprocating machinery.Therefore,it is difficult to extract,analyze,and diagnose mechanical fault features.To accurately extract sensitive features from the strong noise interference and unsteady monitoring signals of reciprocating machinery,a study on the time-frequency feature extraction method of multi-source shock signals is conducted.Combining the characteristics of reciprocating mechanical vibration signals,a targeted optimization method considering the variational modal decomposition(VMD)mode number and second penalty factor is proposed,which completed the adaptive decomposition of coupled signals.Aiming at the bilateral asymmetric attenuation characteristics of reciprocating mechanical shock signals,a new bilateral adaptive Laplace wavelet(BALW)is established.A search strategy for wavelet local parameters of multi-shock signals is proposed using the harmony search(HS)method.A multi-source shock simulation signal is established,and actual data on the valve fault are obtained through diesel engine fault experiments.The fault recognition rate of the intake and exhaust valve clearance is above 90%and the extraction accuracy of the shock start position is improved by 10°. 展开更多
关键词 Shock Signal processing WAVELET VMD Fault diagnosis Diesel engine
下载PDF
Catalyst grading technology for promoting the diesel hydrocracking to naphtha 被引量:1
11
作者 Jia-Qi Ge Peng Zhang +3 位作者 Fa-Min Sun Ze-An Xie Zhi-Jie Wu Bai-Jun Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3798-3806,共9页
This paper reports the application of multi-component hydrocracking catalyst grading technology in diesel hydrocracking system to increase naphtha,and studies the influence of catalyst systems with different number of... This paper reports the application of multi-component hydrocracking catalyst grading technology in diesel hydrocracking system to increase naphtha,and studies the influence of catalyst systems with different number of graded beds on the reaction process of diesel hydrocracking.Three hydrocracking catalysts with different physicochemical properties as gradation components,the diesel hydrocracking reaction on catalyst systems of one-component,two-component and three-component graded beds with different loading sequences are carried out and evaluated,respectively.The catalytic mechanism of the multi-component grading system is analyzed.The results show that,with the increase of the number of grading beds,the space velocity of reaction on each catalyst increases,which can effectively control the overreaction process;along the flow direction of feedstock,the loading sequences of catalysts with acidity decreasing and pore properties increasing can satisfy the demand of different catalytic activity for the conversion of reactant with changing composition to naphtha,which has a guiding role in the conversion of feedstock to target products.Therefore,the conversion of diesel,the selectivity and yield of naphtha all increase significantly on the multi-component catalyst system.The research on the grading technology of multi-component catalysts is of great significance to the promotion and application of catalyst systems in various catalytic fields. 展开更多
关键词 Grading technology Multi-component catalysts HYDROCRACKING DIESEL NAPHTHA
下载PDF
不可食用生物柴油在船用柴油发动机中作为一种环保和可持续的替代燃料在印度发展的潜力 被引量:1
12
作者 Christopher Selvam Damian Yuvarajan Devarajan Ravikumar Jayabal 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第4期870-881,共12页
This article explores the possibilities of inedible biodiesel as a viable and environmentally friendly substitute fuel for marine diesel engines in India.This article encompasses on various crucial elements,including ... This article explores the possibilities of inedible biodiesel as a viable and environmentally friendly substitute fuel for marine diesel engines in India.This article encompasses on various crucial elements,including engine compatibility,biodiesel blends,fuel quality,emissions reduction,regulatory compliance,cost analysis,environmental advantages,and research and development.Implementing biodiesel in maritime operations within India presents favourable opportunities for mitigating carbon emissions,improving air quality,bolstering energy security,promoting sustainable agriculture,and harmonizing with international environmental objectives.Nevertheless,the effective incorporation of biodiesel necessitates a meticulous examination of multiple variables and an all-encompassing methodology that involves formulating policies,investment in infrastructure,research and development,and collaboration among relevant parties.Adopting biodiesel in India’s maritime sector offers a promising prospect for substantially contributing to sustainability and environmental stewardship. 展开更多
关键词 BIODIESEL Marine diesel engines Engine compatibility Emissions reduction Regulatory compliance Energy security SUSTAINABILITY Environmental stewardship
下载PDF
定容弹内柴油/丁醇混合燃料燃烧特性研究 被引量:1
13
作者 李文豪 玄铁民 +2 位作者 何志霞 王谦 李卫民 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第4期850-860,共11页
In this paper,the spray and combustion characteristics of diesel/butanol-blended fuels were studied within a high-temperature and high-pressure constant volume chamber equipped with a single-hole injector.Two blends w... In this paper,the spray and combustion characteristics of diesel/butanol-blended fuels were studied within a high-temperature and high-pressure constant volume chamber equipped with a single-hole injector.Two blends with 80%diesel/20%butanol and 60%diesel/40%butanol mixed by volume were tested in this study.The pure diesel B0 was also tested here as a reference.The spray penetration,flame lift-off length,and soot optical thickness were obtained through high-speed schlieren imaging,OH*chemiluminescence,and diffused back-illumination extinction imaging technique,respectively.The thermogravimetric curves of different fuels were obtained through a thermogravimetric analyzer.The results showed that butanol/diesel blends presented a longer ignition delay(ID)and flame lift-off length compared with pure diesel,and such finding was mainly caused by the lower cetane number and higher latent heat of vaporization of n-butanol.With the increase in the n-butanol ratio,soot production in the combustion process decreased significantly.Given the shorter ID period,the soot distribution of pure diesel reached a steady state earlier than the blends. 展开更多
关键词 Diesel/Butanol blend Optical diagnosis Thermogravimetric analysis Spray characteristic Soot formation
下载PDF
季节因素对二冲程船用柴油机性能参数及排放影响研究 被引量:1
14
作者 Bulut Ozan Ceylan 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第4期795-808,共14页
In comparison to onshore facilities,ships,and their machinery are subjected to challenging external influences such as rolling,vibration,and continually changing air&cooling water temperatures in the marine enviro... In comparison to onshore facilities,ships,and their machinery are subjected to challenging external influences such as rolling,vibration,and continually changing air&cooling water temperatures in the marine environment.However,these factors are typically neglected,or their consequences are deemed to have little effect on machinery,the environment,or human life.In this study,seasonal air&seawater temperature effects on marine diesel engine performance parameters and emissions are investigated by using a full-mission engine room simulator.A tanker ship two-stroke main engine MAN B&W 6S50 MC-C with a power output of 8600 kW is employed during the simulation process.Furthermore,due to its diverse risks,the Marmara Region is chosen as the application area for real-time average temperature data.Based on the research findings,even minor variations in seasonal temperatures have a significant influence on certain key parameters of a ship’s main engine including scavenge pressure,exhaust temperatures,compression and combustion pressures,fuel consumption,power,and NOx-SOx-COx emissions.For instance,during the winter season,the cylinder compression pressure(pc)is recorded at 94 bar,while the maximum pressure(pz)reaches 110 bar.In the summer,pc experiences a decrease of 81 bar,while pz is measured at 101 bar.The emission of nitrogen oxides(NOx)exhibits a measurement of 784 parts per million(ppm)during winter and 744 in summer.The concentration of sulfur oxides(SOx)is recorded at 46 ppm in winter and 53 in summer.Given the current state of global warming and climate change,it is an undeniable fact that the impact of these phenomena will inevitably escalate. 展开更多
关键词 Marine environment Air&seawater temperature Shipping emissions Marine diesel engine Engine room simulator Fuel consumption Turkish Straits
下载PDF
等温加热修正Diesel循环及其内可逆特性 被引量:2
15
作者 徐开云 戈延林 +1 位作者 陈林根 巩启锐 《节能》 2023年第7期31-34,共4页
提出一种新的Diesel循环,即等温加热修正的Diesel循环,并运用有限时间热力学理论建立内可逆修正Diesel循环模型,导出循环功率与效率、功率与压缩比和效率与压缩比的特性关系,研究循环温比、预胀比和传热损失对循环性能的影响,将修正后... 提出一种新的Diesel循环,即等温加热修正的Diesel循环,并运用有限时间热力学理论建立内可逆修正Diesel循环模型,导出循环功率与效率、功率与压缩比和效率与压缩比的特性关系,研究循环温比、预胀比和传热损失对循环性能的影响,将修正后的循环性能与传统的Diesel循环性能进行比较。结果显示:循环功率与效率的关系曲线呈扭叶型,而功率与压缩比和效率与压缩比的关系曲线均呈类抛物线型;随着预胀比和循环温比的变大,循环性能明显提升;与传统的Diesel循环相比,修正后的循环性能更优。 展开更多
关键词 有限时间热力学 等温修正Diesel循环 内可逆循环 性能分析 功率 热效率
下载PDF
Tribological Properties of Ti-DLC Coatings on Piston-pin Surfaces
16
作者 LIU Jiliang XIANG Jianhua +3 位作者 ZUO Zhengxing XIE Guoxin LUO Jun SHENG Yongqing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1136-1146,共11页
A magnetically filtered cathode vacuum arc deposition system was used to deposit Ti-doped diamond-like carbon coatings(Ti-DLC)on pin surfaces to improve the wear resistance of high-power density diesel engine piston p... A magnetically filtered cathode vacuum arc deposition system was used to deposit Ti-doped diamond-like carbon coatings(Ti-DLC)on pin surfaces to improve the wear resistance of high-power density diesel engine piston pins.The coating structure,composition,and morphology were characterised using field emission scanning electron microscopy(FE-SEM),X-ray photoelectron spectroscopy(XPS),Raman spectroscopy,and other techniques.Friction tests were carried out using a universal tribometer to study the tribological properties of pins with or without coatings under dry friction and oil lubrication.The surface morphology and cross-sectional morphology of the Ti-DLC coating show that the coating has a uniform crosssection and good surface properties.The XPS spectrum shows that the coating contains Ti-C,Ti-C*,sp2-C,sp3-C,and C-O/C=O.Raman spectroscopy shows that there is an amorphous carbon phase in the Ti-DLC coating.The friction test shows that the friction temperature increase of the pin with the Ti-DLC coating is lower than that without the coating,especially under dry-friction conditions.At the end of the test,the difierence in temperature increase is 16.7%.The friction coefficient when using high-viscosity lubricating oil with a coating is relatively lower than that without a coating,especially under low-speed and heavy-duty conditions.In the dryfriction state,the coated surface has better wear resistance than the uncoated surface,which primarily manifests as abrasive wear,and the surface without a coating mainly experiences adhesive wear. 展开更多
关键词 high-power density diesel engine piston pin Ti-DLC coating tribological properties
下载PDF
Analysis of the Emissions and Performance of a Diesel Engine Using Pumpkin Seed Oil Methyl Ester with Different Injection Pressures
17
作者 Surendrababu Kuppusamy Prabhahar Muthuswamy +1 位作者 Muthurajan Kumarasamy Sendilvelan Subramanian 《Fluid Dynamics & Materials Processing》 EI 2023年第4期1003-1014,共12页
Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and co... Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and combustion features of a mono cylinder DI diesel engine are assessed using 20%Pumpkin seed methyl ester(PSOME20)and considering varying injection pressures(200,220,240,and 260 bar).The considered Pumpkin seed oil is converted into pumpkin biodiesel by transesterification and then used as fuel.The findings demonstrate that the Brake Thermal Efficiency(BTE)of PSOME20 can be raised by 1.68%,and the carbon monoxide(CO),hydrocarbon(HC),and smoke emanations can be lowered,while oxides of nitrogen(NOx)emissions are increased at an injection pressure(IP)of 240 bar compared to the standard IP of 200 bar.The cylinder pressure and the Heat Release Rate(HRR)become higher at 240 bar,whereas the ignition delay is shortened with respect to PSOME20 at a normal IP of 200 bar. 展开更多
关键词 Pumpkin seed biodiesel PERFORMANCE EMISSION diesel engine injection pressure
下载PDF
Influence of Urea Uneven Injection on the Performances of a Diesel Engine
18
作者 Chang Huang Shuzhan Bai +1 位作者 Guoxiang Li Ke Sun 《Fluid Dynamics & Materials Processing》 EI 2023年第1期83-93,共11页
The influence of heterogeneous flow injection of urea at different velocities and temperatures on NO x conversion efficiency,ammonia storage and ammonia leakage is investigated experimentally.A diesel engine employing... The influence of heterogeneous flow injection of urea at different velocities and temperatures on NO x conversion efficiency,ammonia storage and ammonia leakage is investigated experimentally.A diesel engine employing a selective catalytic reduction(SCR)technology is considered.It is found that for a fixed injection velocity,the degree of ammonia leakage changes depending on the temperature.The higher the temperature,the faster the catalytic reduction reaction and the smaller the degree of ammonia leakage.The temperature has a great influence on the catalytic reduction reaction rate.At an injection velocity of 10000/h,the average reaction rate at 420℃ is 12 times higher than that at 180℃.The injection velocity has a weak influence on the reaction rate.When the injection velocity changes from 10000/h to 40000/h at the same temperature,the average reaction rate does not change appreciably.However,increasing the space velocity can accelerate the leakage of ammonia,thereby miti-gating the benefits associated with the NO_(x) conversion. 展开更多
关键词 Diesel engine ammonia leak conversion efficiency the urea FLOW
下载PDF
A Strategy to Control the Turbocharger Energy of a Diesel Engine at Different Altitudes
19
作者 Jianghua Cheng Xiaojian Li +2 位作者 Lei Shi Kangbo Lu Ling Leng 《Fluid Dynamics & Materials Processing》 EI 2023年第4期959-975,共17页
Power deterioration is a major problem for diesel engines operating at high altitudes.This problem stems from the limited availability of turbocharger energy,which is not enough to increase the boost pressure to the r... Power deterioration is a major problem for diesel engines operating at high altitudes.This problem stems from the limited availability of turbocharger energy,which is not enough to increase the boost pressure to the required level.In this study,a control strategy is introduced in order to achieve engine power recovery at different altitudes.It is shown that as the altitude increases from 0 to 4500 m,the required boost pressure ratio increases from 2.4 to 4.3.The needed turbocharger energy should be increased accordingly by 240%,and the TCC(turbine characterization coefficient)should be adjusted within wide ranges.A 12%decrease in the TCC can lead to a rise of the intake air pressure,which can compensate the pressure decrease due to a 1000 m altitude increase.The fluctuation range of boost pressure was within 14.5 kPa for variations in altitude from 0 to 4500 m. 展开更多
关键词 Turbocharger energy turbine characterization coefficient ALTITUDE diesel engine operating altitude
下载PDF
考虑海洋环境-船体-螺旋桨-主机之间的动态相互作用的船舶在实海况下的油耗预报
20
作者 刘树魁 Kah Hooi(Gerald)Beh Apostolos Papanikolaou 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第4期728-740,共13页
The fuel consumption of a ship has always been an important research topic,but nowadays its importance has even increased as it is directly related to a ship’s greenhouse gas(GHG)emissions,which is now tightly regula... The fuel consumption of a ship has always been an important research topic,but nowadays its importance has even increased as it is directly related to a ship’s greenhouse gas(GHG)emissions,which is now tightly regulated.In this paper,such a dynamic model is presented.The ship’s resistance in calm water and propeller’s performance in open water are required as input.The hull efficiency is estimated empirically.The diesel engine is modelled by a first-order transfer function with a delayed response and its performance is calibrated with the data from the manufacturer’s catalogue.A governor is applied to maintain the pre-set engine’s rotational speed and to control the engine fuel rate.A slope limiter is employed to approximate the actual engine operation during engine transients.The default values can be obtained from the manufacturer engine load acceptance diagram.The developed model is implemented in MATLAB SIMULINK environment.After validation against third-party published results,the influence of using different types of governors on ship speed and fuel consumption is investigated.The model is also applied to simulate the fuel consumption of a ship during a typical acceleration manoeuvre and the scenario of a real ship encountering harsh weather conditions. 展开更多
关键词 Environment-hull-propeller-engine interaction Fuel consumption in seaway PI governor Ship acceleration in harsh seaway Marine diesel engine
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部