The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gau...The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gauss-Lobatto collocation points. By means of the simplifed Jacobi operational matrix, we produce the diferentiation matrix and transfer the space-fractional Burgers' equation into a system of ordinary diferential equations that can be solved by the fourth-order Runge-Kutta method. The numerical simulations indicate that the Jacobi spectral collocation method is highly accurate and fast convergent for the generalized space-fractional Burgers' equation.展开更多
Reomtly, Coordinate bieasuring Machines (CMMs) are widely used to measure roundness errors. Roundness is calculated from a large number of points collected from the profiles of the parts. According to the Guide to t...Reomtly, Coordinate bieasuring Machines (CMMs) are widely used to measure roundness errors. Roundness is calculated from a large number of points collected from the profiles of the parts. According to the Guide to the Expression of Uncertainty in Measta- meat (GUM), all measurement results must have a stated uncertainty associated the titan. However, no CMMs give the uncertainty value of the roundness, because no suitable measrement uncertainty calculation procedure exists. In the case of roundness raeasurement in coordinate metrology, this paper suggests the algorithms for the calculation of the measurement uncertainty of the roudness deviation based on the two mainly used association criteria, LSC and MZC. The calculation of the sensitivity coefficients for the uncertainty calculatiion can be done by autnatic differentiation, in order to avoid introducing additional emars by the traditional difference quotient approxima- tions. The proposed methods are exact and need input data only as the nrasured coordinates of the data points and their associated un- certainties.展开更多
In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The firs...In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The first part of the paper is devoted to the existence and the uniqueness of solutions for such general mean-field reflected backward stochastic differential equations(BSDEs)under Lipschitz conditions,and for the one-dimensional case a comparison theorem is studied.With the help of this comparison result,we prove the existence of the solution for our mean-field reflected forward-backward stochastic differential equation under continuity assumptions.It should be mentioned that,under appropriate assumptions,we prove the uniqueness of this solution as well as that of a comparison theorem for mean-field reflected FBSDEs in a non-trivial manner.展开更多
In this paper, we consider numerical solutions of fractional ordinary diferential equations with the Caputo-Fabrizio derivative, and construct and analyze a high-order time-stepping scheme for this equation. The propo...In this paper, we consider numerical solutions of fractional ordinary diferential equations with the Caputo-Fabrizio derivative, and construct and analyze a high-order time-stepping scheme for this equation. The proposed method makes use of quadratic interpolation function in sub-intervals, which allows to produce fourth-order convergence. A rigorous stability and convergence analysis of the proposed scheme is given. A series of numerical examples are presented to validate the theoretical claims. Traditionally a scheme having fourth-order convergence could only be obtained by using block-by-block technique. The advantage of our scheme is that the solution can be obtained step by step, which is cheaper than a block-by-block-based approach.展开更多
Identifying changes in coal permeability with gas pressure and accurately codifying mean efective stresses in laboratory samples are crucial in predicting gas-fow behavior in coal reservoirs. Traditionally, coal perme...Identifying changes in coal permeability with gas pressure and accurately codifying mean efective stresses in laboratory samples are crucial in predicting gas-fow behavior in coal reservoirs. Traditionally, coal permeability to gas is assessed using the steady-state method, where the equivalent gas pressure in the coal is indexed to the average of upstream and downstream pressures of the coal, while ignoring the nonlinear gas pressure gradient along the gas fow path. For the fow of a compressible gas, the traditional method consistently underestimates the length/volume-averaged pressure and overestimates mean efective stress. The higher the pressure diferential within the sample, the greater the error between the true mean pressure for a compressible fuid and that assumed as the average between upstream and downstream pressures under typical reservoir conditions. A correction coefcient for the compressible fuid pressure asymptotes to approximately 1.3%, representing that the error in mean pressure and efective stress can be on the order of approximately 30%, particularly for highly pressure-sensitive permeabilities and compressibilities, further amplifying errors in evaluated reservoir properties. We utilized this volume-averaged pressure and efective stress to correct permeability and compressibility data reported in the literature. Both the corrected initial permeability and the corrected pore compressibility were found to be smaller than the uncorrected values, due to the underestimation of the true mean fuid pressure, resulting in an overestimation of reservoir permeability if not corrected. The correction coefcient for the initial permeability ranges from 0.6 to 0.1 (reservoir values are only approximately 40% to 90% of laboratory values), while the correction coefcient for pore compressibility remains at approximately 0.75 (reservoir values are only approximately 25% of laboratory value). Errors between the uncorrected and corrected parameters are quantifed under various factors, such as confning pressure, gas sorption, and temperature. By analyzing the evolutions of the initial permeability and pore compressibility, the coupling mechanisms of mechanical compression, adsorption swelling, and thermal expansion on the pore structure of the coal can be interpreted. These fndings can provide insights that are useful for assessing the sensitivity of coal permeability to gas pressure as truly representative of reservoir conditions.展开更多
This paper studies a class of impulsive neutral stochastic partial differential equations in real Hilbert spaces.The main goal here is to consider the Trotter-Kato approximations of mild solutions of such equations in...This paper studies a class of impulsive neutral stochastic partial differential equations in real Hilbert spaces.The main goal here is to consider the Trotter-Kato approximations of mild solutions of such equations in the pth-mean(p≥2).As an application,a classical limit theorem on the dependence of such equations on a parameter is obtained.The novelty of this paper is that the combination of this approximating system and such equations has not been considered before.展开更多
LBlock is a 32-round lightweight block cipher with 64-bit block size and 80-bit key. This paper identifies 16- round related-key impossible differentials of LBlock, which are better than the 15-round related-key impos...LBlock is a 32-round lightweight block cipher with 64-bit block size and 80-bit key. This paper identifies 16- round related-key impossible differentials of LBlock, which are better than the 15-round related-key impossible differentials used in the previous attack. Based on these 16-round related-key impossible differentials, we can attack 23 rounds of LBlock while the previous related-key impossible differential attacks could only work on 22-round LBlock. This makes our attack on LBlock the best attack in terms of the number of attacked rounds.展开更多
Private distributed learning studies the problem of how multiple distributed entities collaboratively train a shared deep network with their private data unrevealed. With the security provided by the protocols of blin...Private distributed learning studies the problem of how multiple distributed entities collaboratively train a shared deep network with their private data unrevealed. With the security provided by the protocols of blind quantum computation, the cooperation between quantum physics and machine learning may lead to unparalleled prospect for solving private distributed learning tasks.In this paper, we introduce a quantum protocol for distributed learning that is able to utilize the computational power of the remote quantum servers while keeping the private data safe. For concreteness, we first introduce a protocol for private single-party delegated training of variational quantum classifiers based on blind quantum computing and then extend this protocol to multiparty private distributed learning incorporated with diferential privacy. We carry out extensive numerical simulations with diferent real-life datasets and encoding strategies to benchmark the efectiveness of our protocol. We find that our protocol is robust to experimental imperfections and is secure under the gradient attack after the incorporation of diferential privacy. Our results show the potential for handling computationally expensive distributed learning tasks with privacy guarantees, thus providing a valuable guide for exploring quantum advantages from the security perspective in the field of machine learning with real-life applications.展开更多
Satellite integrity monitoring is vital to satellite-based augmentation systems,and can provide the confdence of the diferential corrections for each monitored satellite satisfying the stringent safety-of-life require...Satellite integrity monitoring is vital to satellite-based augmentation systems,and can provide the confdence of the diferential corrections for each monitored satellite satisfying the stringent safety-of-life requirements.Satellite integrity information includes the user diferential range error and the clock-ephemeris covariance which are used to deduce integrity probability.However,the existing direct statistic methods sufer from a low integrity bounding percentage.To address this problem,we develop an improved covariance-based method to determine satellite integrity information and evaluate its performance in the range domain and position domain.Compared with the direct statistic method,the integrity bounding percentage is improved by 24.91%and the availability by 5.63%.Compared with the covariance-based method,the convergence rate for the user diferential range error is improved by 8.04%.The proposed method is useful for the satellite integrity monitoring of a satellite-based augmentation system.展开更多
In this paper, we study the exponential stability of the zero solution to a neutral diferential equation. By applying the Lyapunov-Krasovskiì functional approach, we prove a result on the stability of the zero so...In this paper, we study the exponential stability of the zero solution to a neutral diferential equation. By applying the Lyapunov-Krasovskiì functional approach, we prove a result on the stability of the zero solution. The result we obtained extends and generalizes the existing ones in the previous literature. Comparing with the previous results, our result is new and complements some known results.展开更多
By the averaging method of frst order, we study in this work the limit cycles for a class of second order diferential equations and Dufng diferential equations which can be seen as a particular perturbation of the har...By the averaging method of frst order, we study in this work the limit cycles for a class of second order diferential equations and Dufng diferential equations which can be seen as a particular perturbation of the harmonic oscillator.展开更多
This paper is concerned with the existence of solution to a nonlinear neutral stochastic diferential system with delay in a Hilbert Space. Sufcient conditions for the existence are obtained using the Schaefer fxed poi...This paper is concerned with the existence of solution to a nonlinear neutral stochastic diferential system with delay in a Hilbert Space. Sufcient conditions for the existence are obtained using the Schaefer fxed point theorem.展开更多
In this paper, by Schauder’s fxed point theorem and the contraction mapping principle, we consider the existence and stability of T-anti-periodic solutions to fractional diferential equations of order α∈(0,1). An e...In this paper, by Schauder’s fxed point theorem and the contraction mapping principle, we consider the existence and stability of T-anti-periodic solutions to fractional diferential equations of order α∈(0,1). An example is given to illustrate the main results.展开更多
A backward stochastic diferential equation is discussed in this paper. Under some weaker conditions than uniformly Lipschitzian condition given by Pardoux and Peng(1990), using Picard interaction and Cauchy sequence, ...A backward stochastic diferential equation is discussed in this paper. Under some weaker conditions than uniformly Lipschitzian condition given by Pardoux and Peng(1990), using Picard interaction and Cauchy sequence, the existence and uniqueness of the solutions to the backward stochastic diferential equation.展开更多
In this paper, using Banach’s contraction principle, we consider the Hyers-UlamRassias stability of nonlinear partial diferential equations. An example is given to demonstrate the applicability of our results.
Using the fve functionals fxed point theorem, in this paper we present some criteria which guarantee the existence of three positive solutions to second order impulsive Neumann boundary value problem.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11701358,11774218)。
文摘The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gauss-Lobatto collocation points. By means of the simplifed Jacobi operational matrix, we produce the diferentiation matrix and transfer the space-fractional Burgers' equation into a system of ordinary diferential equations that can be solved by the fourth-order Runge-Kutta method. The numerical simulations indicate that the Jacobi spectral collocation method is highly accurate and fast convergent for the generalized space-fractional Burgers' equation.
基金supported by the National Natural Science Foundation of China(No.50705002,50627501)
文摘Reomtly, Coordinate bieasuring Machines (CMMs) are widely used to measure roundness errors. Roundness is calculated from a large number of points collected from the profiles of the parts. According to the Guide to the Expression of Uncertainty in Measta- meat (GUM), all measurement results must have a stated uncertainty associated the titan. However, no CMMs give the uncertainty value of the roundness, because no suitable measrement uncertainty calculation procedure exists. In the case of roundness raeasurement in coordinate metrology, this paper suggests the algorithms for the calculation of the measurement uncertainty of the roudness deviation based on the two mainly used association criteria, LSC and MZC. The calculation of the sensitivity coefficients for the uncertainty calculatiion can be done by autnatic differentiation, in order to avoid introducing additional emars by the traditional difference quotient approxima- tions. The proposed methods are exact and need input data only as the nrasured coordinates of the data points and their associated un- certainties.
基金supported in part by theNSFC(11871037)Shandong Province(JQ201202)+3 种基金NSFC-RS(11661130148NA150344)111 Project(B12023)supported by the Qingdao Postdoctoral Application Research Project(QDBSH20220202092)。
文摘In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The first part of the paper is devoted to the existence and the uniqueness of solutions for such general mean-field reflected backward stochastic differential equations(BSDEs)under Lipschitz conditions,and for the one-dimensional case a comparison theorem is studied.With the help of this comparison result,we prove the existence of the solution for our mean-field reflected forward-backward stochastic differential equation under continuity assumptions.It should be mentioned that,under appropriate assumptions,we prove the uniqueness of this solution as well as that of a comparison theorem for mean-field reflected FBSDEs in a non-trivial manner.
基金This research was supported by the National Natural Science Foundation of China(Grant numbers 11501140,51661135011,11421110001,and 91630204)the Foundation of Guizhou Science and Technology Department(No.[2017]1086)The first author would like to acknowledge the financial support by the China Scholarship Council(201708525037).
文摘In this paper, we consider numerical solutions of fractional ordinary diferential equations with the Caputo-Fabrizio derivative, and construct and analyze a high-order time-stepping scheme for this equation. The proposed method makes use of quadratic interpolation function in sub-intervals, which allows to produce fourth-order convergence. A rigorous stability and convergence analysis of the proposed scheme is given. A series of numerical examples are presented to validate the theoretical claims. Traditionally a scheme having fourth-order convergence could only be obtained by using block-by-block technique. The advantage of our scheme is that the solution can be obtained step by step, which is cheaper than a block-by-block-based approach.
基金support of the National Natural Science Foundation of China(1200208142102338,42202323)the Natural Science Foundation of Shandong Province(ZR2019MA009)The Technology Improvement Project of Small and Medium Enterprise in Shandong Province,China(2021TSGC1100),is also gratefully acknowledged.Derek Elsworth acknowledges support from the G.Albert Shoemaker endowment.
文摘Identifying changes in coal permeability with gas pressure and accurately codifying mean efective stresses in laboratory samples are crucial in predicting gas-fow behavior in coal reservoirs. Traditionally, coal permeability to gas is assessed using the steady-state method, where the equivalent gas pressure in the coal is indexed to the average of upstream and downstream pressures of the coal, while ignoring the nonlinear gas pressure gradient along the gas fow path. For the fow of a compressible gas, the traditional method consistently underestimates the length/volume-averaged pressure and overestimates mean efective stress. The higher the pressure diferential within the sample, the greater the error between the true mean pressure for a compressible fuid and that assumed as the average between upstream and downstream pressures under typical reservoir conditions. A correction coefcient for the compressible fuid pressure asymptotes to approximately 1.3%, representing that the error in mean pressure and efective stress can be on the order of approximately 30%, particularly for highly pressure-sensitive permeabilities and compressibilities, further amplifying errors in evaluated reservoir properties. We utilized this volume-averaged pressure and efective stress to correct permeability and compressibility data reported in the literature. Both the corrected initial permeability and the corrected pore compressibility were found to be smaller than the uncorrected values, due to the underestimation of the true mean fuid pressure, resulting in an overestimation of reservoir permeability if not corrected. The correction coefcient for the initial permeability ranges from 0.6 to 0.1 (reservoir values are only approximately 40% to 90% of laboratory values), while the correction coefcient for pore compressibility remains at approximately 0.75 (reservoir values are only approximately 25% of laboratory value). Errors between the uncorrected and corrected parameters are quantifed under various factors, such as confning pressure, gas sorption, and temperature. By analyzing the evolutions of the initial permeability and pore compressibility, the coupling mechanisms of mechanical compression, adsorption swelling, and thermal expansion on the pore structure of the coal can be interpreted. These fndings can provide insights that are useful for assessing the sensitivity of coal permeability to gas pressure as truly representative of reservoir conditions.
基金Supported by the National Natural Science Foundation of China(Grant No.12171361)the Humanity and Social Science Youth foundation of Ministry of Education(Grant No.20YJC790174)。
文摘This paper studies a class of impulsive neutral stochastic partial differential equations in real Hilbert spaces.The main goal here is to consider the Trotter-Kato approximations of mild solutions of such equations in the pth-mean(p≥2).As an application,a classical limit theorem on the dependence of such equations on a parameter is obtained.The novelty of this paper is that the combination of this approximating system and such equations has not been considered before.
基金supported by the National Basic Research 973 Program of China under Grant No.2013CB834205the National Natural Science Foundation of China under Grant Nos.61133013,61070244,and 61103237+1 种基金the Program for New Century Excellent Talents in University of China under Grant No.NCET-13-0350the Interdisciplinary Research Foundation of Shandong University of China under Grant No.2012JC018
文摘LBlock is a 32-round lightweight block cipher with 64-bit block size and 80-bit key. This paper identifies 16- round related-key impossible differentials of LBlock, which are better than the 15-round related-key impossible differentials used in the previous attack. Based on these 16-round related-key impossible differentials, we can attack 23 rounds of LBlock while the previous related-key impossible differential attacks could only work on 22-round LBlock. This makes our attack on LBlock the best attack in terms of the number of attacked rounds.
基金supported by the start-up fund from Tsinghua University(Grant No. 53330300320)the National Natural Science Foundation of China (Grant No. 12075128)the Shanghai Qi Zhi Institute。
文摘Private distributed learning studies the problem of how multiple distributed entities collaboratively train a shared deep network with their private data unrevealed. With the security provided by the protocols of blind quantum computation, the cooperation between quantum physics and machine learning may lead to unparalleled prospect for solving private distributed learning tasks.In this paper, we introduce a quantum protocol for distributed learning that is able to utilize the computational power of the remote quantum servers while keeping the private data safe. For concreteness, we first introduce a protocol for private single-party delegated training of variational quantum classifiers based on blind quantum computing and then extend this protocol to multiparty private distributed learning incorporated with diferential privacy. We carry out extensive numerical simulations with diferent real-life datasets and encoding strategies to benchmark the efectiveness of our protocol. We find that our protocol is robust to experimental imperfections and is secure under the gradient attack after the incorporation of diferential privacy. Our results show the potential for handling computationally expensive distributed learning tasks with privacy guarantees, thus providing a valuable guide for exploring quantum advantages from the security perspective in the field of machine learning with real-life applications.
基金supported by the Research Startup Funds from Tianjin University of Technology under Grant 01002101.
文摘Satellite integrity monitoring is vital to satellite-based augmentation systems,and can provide the confdence of the diferential corrections for each monitored satellite satisfying the stringent safety-of-life requirements.Satellite integrity information includes the user diferential range error and the clock-ephemeris covariance which are used to deduce integrity probability.However,the existing direct statistic methods sufer from a low integrity bounding percentage.To address this problem,we develop an improved covariance-based method to determine satellite integrity information and evaluate its performance in the range domain and position domain.Compared with the direct statistic method,the integrity bounding percentage is improved by 24.91%and the availability by 5.63%.Compared with the covariance-based method,the convergence rate for the user diferential range error is improved by 8.04%.The proposed method is useful for the satellite integrity monitoring of a satellite-based augmentation system.
文摘In this paper, we study the exponential stability of the zero solution to a neutral diferential equation. By applying the Lyapunov-Krasovskiì functional approach, we prove a result on the stability of the zero solution. The result we obtained extends and generalizes the existing ones in the previous literature. Comparing with the previous results, our result is new and complements some known results.
文摘By the averaging method of frst order, we study in this work the limit cycles for a class of second order diferential equations and Dufng diferential equations which can be seen as a particular perturbation of the harmonic oscillator.
基金supported by the grant of Chongqing Municipal Educational Commission(No.KJ120609)Natural Science Foundation Project of CSTC,2010BB9318+1 种基金CQ CSTC,2009BB3057the Ph.D.Foundation of Chongqing Normal University under Grants No.09XLB007
文摘This paper is concerned with the existence of solution to a nonlinear neutral stochastic diferential system with delay in a Hilbert Space. Sufcient conditions for the existence are obtained using the Schaefer fxed point theorem.
基金supported by the Key Foundation of Anhui Education Bureau(KJ2012A019,KJ2013A028)Anhui Provincial Natural Science Foundation(1208085MA13,1308085MA01,1308085QA15)+2 种基金the Research Fund for the Doctoral Program of Higher Education(20103401120002,20113401120001)211 Project of Anhui University(02303129,02303303-33030011,0230390239020011,KYXL2012004,XJYJXKC04)NNSF of China(11226247,11271371)
文摘In this paper, by Schauder’s fxed point theorem and the contraction mapping principle, we consider the existence and stability of T-anti-periodic solutions to fractional diferential equations of order α∈(0,1). An example is given to illustrate the main results.
基金Supported by NNSF of China(10171010)Scientifc Research Fund of Zhejiang Provincial Education Department(Y201329578)
文摘A backward stochastic diferential equation is discussed in this paper. Under some weaker conditions than uniformly Lipschitzian condition given by Pardoux and Peng(1990), using Picard interaction and Cauchy sequence, the existence and uniqueness of the solutions to the backward stochastic diferential equation.
文摘In this paper, using Banach’s contraction principle, we consider the Hyers-UlamRassias stability of nonlinear partial diferential equations. An example is given to demonstrate the applicability of our results.
基金supported by Hunan Provincial Natural Science Foundation of China(No.10JJ6002)
文摘Using the fve functionals fxed point theorem, in this paper we present some criteria which guarantee the existence of three positive solutions to second order impulsive Neumann boundary value problem.