In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part,...In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.展开更多
A variable coefficient viscoelastic equation with a time-varying delay in the boundary feedback and acoustic boundary conditions and nonlinear source term is considered.Under suitable assumptions, general decay result...A variable coefficient viscoelastic equation with a time-varying delay in the boundary feedback and acoustic boundary conditions and nonlinear source term is considered.Under suitable assumptions, general decay results of the energy are established via suitable Lyapunov functionals and some properties of the convex functions. Our result is obtained without imposing any restrictive growth assumption on the damping term and the elements of the matrix A and the kernel function g.展开更多
In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted,...In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted, and the results in [1 - 4] are improved and extended by means of the modified method of multiple scales.展开更多
The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametr...The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametric transformation models. The aim of this article is to develop modified estimating equations under semiparametric transformation models of survival time with time-varying coefficient effect and time-varying continuous covariates. For this, it is important to organize the data in a counting process style and transform the time with standard transformation classes which shall be applied in this article. In the situation when the effect of coefficient and covariates change over time, the widely used maximum likelihood estimation method becomes more complex and burdensome in estimating consistent estimates. To overcome this problem, alternatively, the modified estimating equations were applied to estimate the unknown parameters and unspecified monotone transformation functions. The estimating equations were modified to incorporate the time-varying effect in both coefficient and covariates. The performance of the proposed methods is tested through a simulation study. To sum up the study, the effect of possibly time-varying covariates and time-varying coefficients was evaluated in some special cases of semiparametric transformation models. Finally, the results have shown that the role of the time-varying covariate in the semiparametric transformation models was plausible and credible.展开更多
We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponent...We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponential fitting scheme to correct this prediction. This combination is called the three-step predictor-corrector of exponential fitting method. The three-step predictor-corrector of exponential fitting method is applied to numerically compute the coupled nonlinear Schroedinger equation and the nonlinear Schroedinger equation with varying coefficients. The numerical results show that the scheme is highly accurate.展开更多
In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero c...In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure.展开更多
The present work analyzes the interaction of oblique waves by a porous flexible breakwater in the presence of a step-type bottom.The physical models for both scattering and trapping cases are considered and developed ...The present work analyzes the interaction of oblique waves by a porous flexible breakwater in the presence of a step-type bottom.The physical models for both scattering and trapping cases are considered and developed within the framework of small amplitude water-wave theory.Darcy’s law is used to model the wave interaction with the porous medium.It is assumed that the varying bottom extends over a finite interval,connected by a finite length of uniform bottom near an impermeable wall,and a semi-infinite length of bottom in the open water region.The boundary value problem is solved using the eigenfunction expansion method in the uniform bottom regions,while a modified mild-slope equation(MMSE)is used for the region with the varying bottom.Additionally,a mass-conserving jump condition is employed to handle the solution at slope discontinuities in the bottom.A system of equations is derived by matching the solutions at interfaces.The reflection coefficient and force on the breakwater and impermeable wall are plotted and analyzed for various parameters,such as the length of the varying bottom,depth ratio,angle of incidence,and flexural rigidity.It is observed that moderate values of flexural rigidity and depth ratio significantly contribute to an optimum reflection coefficient and reduce the wave force on the wall and breakwater.Remarkably,the outcomes of this study are assumed to be applicable in the construction of this type of breakwater in coastal regions.展开更多
In this letter, exact chirped multi-soliton solutions of the nonlinear Schrodinger (NLS) equation with varying coefficients are found. The explicit chirped one- and two-soliton solutions are generated. As an example, ...In this letter, exact chirped multi-soliton solutions of the nonlinear Schrodinger (NLS) equation with varying coefficients are found. The explicit chirped one- and two-soliton solutions are generated. As an example, an exponential distributed control system is considered, and some main features of solutions are shown. The results reveal that chirped soliton can all be nonlinearly compressed cleanly and efficiently in an optical fiber with no loss or gain, with the loss, or with the gain. Furthermore, under the same initial condition, compression of optical soliton in the optical fiber with the loss is the most dramatic. Also, under nonintegrable condition and finite initial perturbations, the evolution of chirped soliton has been demonstrated by simulating numerically.展开更多
基金Provincial Science and Technology Foundation of Guizhou
文摘In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.
文摘A variable coefficient viscoelastic equation with a time-varying delay in the boundary feedback and acoustic boundary conditions and nonlinear source term is considered.Under suitable assumptions, general decay results of the energy are established via suitable Lyapunov functionals and some properties of the convex functions. Our result is obtained without imposing any restrictive growth assumption on the damping term and the elements of the matrix A and the kernel function g.
基金The Project Supported by the National Natural Science Foundation of China
文摘In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted, and the results in [1 - 4] are improved and extended by means of the modified method of multiple scales.
文摘The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametric transformation models. The aim of this article is to develop modified estimating equations under semiparametric transformation models of survival time with time-varying coefficient effect and time-varying continuous covariates. For this, it is important to organize the data in a counting process style and transform the time with standard transformation classes which shall be applied in this article. In the situation when the effect of coefficient and covariates change over time, the widely used maximum likelihood estimation method becomes more complex and burdensome in estimating consistent estimates. To overcome this problem, alternatively, the modified estimating equations were applied to estimate the unknown parameters and unspecified monotone transformation functions. The estimating equations were modified to incorporate the time-varying effect in both coefficient and covariates. The performance of the proposed methods is tested through a simulation study. To sum up the study, the effect of possibly time-varying covariates and time-varying coefficients was evaluated in some special cases of semiparametric transformation models. Finally, the results have shown that the role of the time-varying covariate in the semiparametric transformation models was plausible and credible.
基金The project supported by Liu Hui Applied Mathematics Center of Nankai University and 985 Education Development Plan of Tianjin University
文摘We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponential fitting scheme to correct this prediction. This combination is called the three-step predictor-corrector of exponential fitting method. The three-step predictor-corrector of exponential fitting method is applied to numerically compute the coupled nonlinear Schroedinger equation and the nonlinear Schroedinger equation with varying coefficients. The numerical results show that the scheme is highly accurate.
文摘In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure.
文摘The present work analyzes the interaction of oblique waves by a porous flexible breakwater in the presence of a step-type bottom.The physical models for both scattering and trapping cases are considered and developed within the framework of small amplitude water-wave theory.Darcy’s law is used to model the wave interaction with the porous medium.It is assumed that the varying bottom extends over a finite interval,connected by a finite length of uniform bottom near an impermeable wall,and a semi-infinite length of bottom in the open water region.The boundary value problem is solved using the eigenfunction expansion method in the uniform bottom regions,while a modified mild-slope equation(MMSE)is used for the region with the varying bottom.Additionally,a mass-conserving jump condition is employed to handle the solution at slope discontinuities in the bottom.A system of equations is derived by matching the solutions at interfaces.The reflection coefficient and force on the breakwater and impermeable wall are plotted and analyzed for various parameters,such as the length of the varying bottom,depth ratio,angle of incidence,and flexural rigidity.It is observed that moderate values of flexural rigidity and depth ratio significantly contribute to an optimum reflection coefficient and reduce the wave force on the wall and breakwater.Remarkably,the outcomes of this study are assumed to be applicable in the construction of this type of breakwater in coastal regions.
基金This work was supported by the National Natural Science Foundation of China (No. 60477026), the Provincial Youth Science Foundation of Shanxi (No. 20011015).
文摘In this letter, exact chirped multi-soliton solutions of the nonlinear Schrodinger (NLS) equation with varying coefficients are found. The explicit chirped one- and two-soliton solutions are generated. As an example, an exponential distributed control system is considered, and some main features of solutions are shown. The results reveal that chirped soliton can all be nonlinearly compressed cleanly and efficiently in an optical fiber with no loss or gain, with the loss, or with the gain. Furthermore, under the same initial condition, compression of optical soliton in the optical fiber with the loss is the most dramatic. Also, under nonintegrable condition and finite initial perturbations, the evolution of chirped soliton has been demonstrated by simulating numerically.