To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided ...To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided into two stages which are forecasting model selection and weighted combination forecasting.Based on Markov chain conversion and cloud model,the forecasting model selection is implanted and several outstanding models are selected for the combination forecasting.For the weighted combination forecasting,a fuzzy scale joint evaluation method is proposed to determine the weight of selected forecasting model.The percentage error and mean absolute percentage error of weighted combination forecasting result of the power consumption in a certain area of China are 0.7439%and 0.3198%,respectively,while the maximum values of these two indexes of single forecasting models are 5.2278%and 1.9497%.It shows that the forecasting indexes of proposed model are improved significantly compared with the single forecasting models.展开更多
Variable weight combination forecasting combines individual forecasting models after giving them proper weights at each time point. Weight is the type of function that changes with forecast time. A relatively rational...Variable weight combination forecasting combines individual forecasting models after giving them proper weights at each time point. Weight is the type of function that changes with forecast time. A relatively rational description of the system can be proposed with the forecasting method, which is of higher precision and better stability. Two individual forecasting models, grey system forecasting and multiple regression forecasting, were generated based on the historical data and influencing factors of coal demand in China from 1981 to 2008. According to the theory of combination forecasting, the variable weight combination forecasting model was formulated to forecast coal demand in China for the next 12 years.展开更多
Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a ...Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a country's energy policy. Over the years, studies have shown that a combinative model gives better projected results compared to a single model. In this study, we used Polynomial Curve and Moving Average Combination Projection (PCMACP) model to estimate the future natural gas consumption in China from 2009 to 2015. The new proposed PCMACP model shows more reliable and accurate results: its Mean Absolute Percentage Error (MAPE) is less than those of any previous models within the investigated range. According to the PCMACP model, the average annual growth rate will increase for the next 7 years and the amount of natural gas consumption will reach 171600 million cubic meters in 2015 in China.展开更多
As the acceleration of aged population tendency, building models to forecast Alzheimer’s Disease (AD) is essential. In this article, we surveyed 1157 interviewees. By analyzing the results using three machine learnin...As the acceleration of aged population tendency, building models to forecast Alzheimer’s Disease (AD) is essential. In this article, we surveyed 1157 interviewees. By analyzing the results using three machine learning methods—BP neural network, SVM and random forest, we can derive the accuracy of them in forecasting AD, so that we can compare the methods in solving AD prediction. Among them, random forest is the most accurate method. Moreover, to combine the advantages of the methods, we build a new combination forecasting model based on the three machine learning models, which is proved more accurate than the models singly. At last, we give the conclusion of the connection between life style and AD, and provide several suggestions for elderly people to help them prevent AD.展开更多
In order to consider both the deterministic and the stochastic property of atmospheric motion simul- taneously,in this paper,the weather prediction is proposed as the problem of the evolution of meteorological field.T...In order to consider both the deterministic and the stochastic property of atmospheric motion simul- taneously,in this paper,the weather prediction is proposed as the problem of the evolution of meteorological field.The historical viewpoint of atmospheric motion is emphasized here.Based on time series analysis te- chnique,a stochastic-dynamical model with multiple initial fields is derived.Thus,weather forecasting is sum- meal up as a problem of solving a set of stochastic difference equations.For the barotropic atmosphere,the numerical solutions of the equations are obtained by using the method of empirical orthogonal functions (EOF),and examples of medium-range weather prediction are given here.Meanwhile,selecting the order of time series,i.e.,determining the number of initial fields properly,is also discussed.展开更多
A 3-D forecasting model for oil-spill is developed using the finite difference method to numerically solve the shallow water equation. The instantaneous flow distribution in the studied area is calculated and the traj...A 3-D forecasting model for oil-spill is developed using the finite difference method to numerically solve the shallow water equation. The instantaneous flow distribution in the studied area is calculated and the trajectory of the oil-slick centroid is predicted by means of Lagrange’s method. The computed results agree with the observed data well, this shows that this 3-D forecasting model has high accuracy.展开更多
This investigative study is focused on the impact of wavelet on traditional forecasting time-series models,which significantly shows the usage of wavelet algorithms.Wavelet Decomposition(WD)algorithm has been combined...This investigative study is focused on the impact of wavelet on traditional forecasting time-series models,which significantly shows the usage of wavelet algorithms.Wavelet Decomposition(WD)algorithm has been combined with various traditional forecasting time-series models,such as Least Square Support Vector Machine(LSSVM),Artificial Neural Network(ANN)and Multivariate Adaptive Regression Splines(MARS)and their effects are examined in terms of the statistical estimations.The WD has been used as a mathematical application in traditional forecast modelling to collect periodically measured parameters,which has yielded tremendous constructive outcomes.Further,it is observed that the wavelet combined models are classy compared to the various time series models in terms of performance basis.Therefore,combining wavelet forecasting models has yielded much better results.展开更多
Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability,and the development of the artificial intelligence industry.To provide investors with a mo...Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability,and the development of the artificial intelligence industry.To provide investors with a more reliable reference in terms of artificial intelligence index investment,this paper selects the NASDAQ CTA Artificial Intelligence and Robotics(AIRO)Index as the research target,and proposes innovative hybrid methods to forecast returns by considering its multiple structural characteristics.Specifically,this paper uses the ensemble empirical mode decomposition(EEMD)method and the modified iterative cumulative sum of squares(ICSS)algorithm to decompose the index returns and identify the structural breakpoints.Furthermore,it combines the least-square support vector machine approach with the particle swarm optimization method(PSO-LSSVM)and the generalized autoregressive conditional heteroskedasticity(GARCH)type models to construct innovative hybrid forecasting methods.On the one hand,the empirical results indicate that the AIRO index returns have complex structural characteristics,and present time-varying and nonlinear characteristics with high complexity and mutability;on the other hand,the newly proposed hybrid forecasting method(i.e.,the EEMD-PSO-LSSVM-ICSS-GARCH models)which considers these complex structural characteristics,can yield the optimal forecasting performance for the AIRO index returns.展开更多
文摘To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided into two stages which are forecasting model selection and weighted combination forecasting.Based on Markov chain conversion and cloud model,the forecasting model selection is implanted and several outstanding models are selected for the combination forecasting.For the weighted combination forecasting,a fuzzy scale joint evaluation method is proposed to determine the weight of selected forecasting model.The percentage error and mean absolute percentage error of weighted combination forecasting result of the power consumption in a certain area of China are 0.7439%and 0.3198%,respectively,while the maximum values of these two indexes of single forecasting models are 5.2278%and 1.9497%.It shows that the forecasting indexes of proposed model are improved significantly compared with the single forecasting models.
基金the National Natural Science Foundation in China (No.70873079 and 70941022)Shanxi Natural Science Foundation (No.2009011021-1)Shanxi International Science and Technology Cooperation Foundation (2008081014)
文摘Variable weight combination forecasting combines individual forecasting models after giving them proper weights at each time point. Weight is the type of function that changes with forecast time. A relatively rational description of the system can be proposed with the forecasting method, which is of higher precision and better stability. Two individual forecasting models, grey system forecasting and multiple regression forecasting, were generated based on the historical data and influencing factors of coal demand in China from 1981 to 2008. According to the theory of combination forecasting, the variable weight combination forecasting model was formulated to forecast coal demand in China for the next 12 years.
基金supported by the Youth Fund of Chinese Academy of Sciences Knowledge Innovation Program area frontier projects (No. S200603)the Innovation Team Project of Education Department of Liaoning Province (No. 2007T050)
文摘Ensuring a sufficient energy supply is essential to a country. Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a country's energy policy. Over the years, studies have shown that a combinative model gives better projected results compared to a single model. In this study, we used Polynomial Curve and Moving Average Combination Projection (PCMACP) model to estimate the future natural gas consumption in China from 2009 to 2015. The new proposed PCMACP model shows more reliable and accurate results: its Mean Absolute Percentage Error (MAPE) is less than those of any previous models within the investigated range. According to the PCMACP model, the average annual growth rate will increase for the next 7 years and the amount of natural gas consumption will reach 171600 million cubic meters in 2015 in China.
文摘As the acceleration of aged population tendency, building models to forecast Alzheimer’s Disease (AD) is essential. In this article, we surveyed 1157 interviewees. By analyzing the results using three machine learning methods—BP neural network, SVM and random forest, we can derive the accuracy of them in forecasting AD, so that we can compare the methods in solving AD prediction. Among them, random forest is the most accurate method. Moreover, to combine the advantages of the methods, we build a new combination forecasting model based on the three machine learning models, which is proved more accurate than the models singly. At last, we give the conclusion of the connection between life style and AD, and provide several suggestions for elderly people to help them prevent AD.
文摘In order to consider both the deterministic and the stochastic property of atmospheric motion simul- taneously,in this paper,the weather prediction is proposed as the problem of the evolution of meteorological field.The historical viewpoint of atmospheric motion is emphasized here.Based on time series analysis te- chnique,a stochastic-dynamical model with multiple initial fields is derived.Thus,weather forecasting is sum- meal up as a problem of solving a set of stochastic difference equations.For the barotropic atmosphere,the numerical solutions of the equations are obtained by using the method of empirical orthogonal functions (EOF),and examples of medium-range weather prediction are given here.Meanwhile,selecting the order of time series,i.e.,determining the number of initial fields properly,is also discussed.
文摘A 3-D forecasting model for oil-spill is developed using the finite difference method to numerically solve the shallow water equation. The instantaneous flow distribution in the studied area is calculated and the trajectory of the oil-slick centroid is predicted by means of Lagrange’s method. The computed results agree with the observed data well, this shows that this 3-D forecasting model has high accuracy.
文摘This investigative study is focused on the impact of wavelet on traditional forecasting time-series models,which significantly shows the usage of wavelet algorithms.Wavelet Decomposition(WD)algorithm has been combined with various traditional forecasting time-series models,such as Least Square Support Vector Machine(LSSVM),Artificial Neural Network(ANN)and Multivariate Adaptive Regression Splines(MARS)and their effects are examined in terms of the statistical estimations.The WD has been used as a mathematical application in traditional forecast modelling to collect periodically measured parameters,which has yielded tremendous constructive outcomes.Further,it is observed that the wavelet combined models are classy compared to the various time series models in terms of performance basis.Therefore,combining wavelet forecasting models has yielded much better results.
基金support from National Natural Science Foundation of China(Nos.71774051,72243003)National Social Science Fund of China(No.22AZD128)the seminar participants in Center for Resource and Environmental Management,Hunan University,China.
文摘Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability,and the development of the artificial intelligence industry.To provide investors with a more reliable reference in terms of artificial intelligence index investment,this paper selects the NASDAQ CTA Artificial Intelligence and Robotics(AIRO)Index as the research target,and proposes innovative hybrid methods to forecast returns by considering its multiple structural characteristics.Specifically,this paper uses the ensemble empirical mode decomposition(EEMD)method and the modified iterative cumulative sum of squares(ICSS)algorithm to decompose the index returns and identify the structural breakpoints.Furthermore,it combines the least-square support vector machine approach with the particle swarm optimization method(PSO-LSSVM)and the generalized autoregressive conditional heteroskedasticity(GARCH)type models to construct innovative hybrid forecasting methods.On the one hand,the empirical results indicate that the AIRO index returns have complex structural characteristics,and present time-varying and nonlinear characteristics with high complexity and mutability;on the other hand,the newly proposed hybrid forecasting method(i.e.,the EEMD-PSO-LSSVM-ICSS-GARCH models)which considers these complex structural characteristics,can yield the optimal forecasting performance for the AIRO index returns.