We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we pro...We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we propose a rule for a time-stepping,which is a variant of what was successfully used in the case of nonlinear parabolic equations. A numerical blow-up time is defined and is proved to converge, under a certain hypothesis, to the real blow-up time as the grid size tends to zero.展开更多
Objective To compare the event-related potentials (ERPs) waves of verbs and prepositions in the brain. Methods We recorded ERPs in the brain while participants judged the legality of the collocation for verbs and "...Objective To compare the event-related potentials (ERPs) waves of verbs and prepositions in the brain. Methods We recorded ERPs in the brain while participants judged the legality of the collocation for verbs and "preposition". Results Both verbs and prepositions elicited a negativity at the frontal site in 230-330 ms and 350-500 ms window. No difference was seen in 230-330 ms and 350-500 ms window; In difference waves, a negativity was elicited in the left and fight hemisphere at about 270-400 ms and 470-600 ms window for both open and closed-class words. Conclusion These may demonstrate that prepositions in modem Chinese are probably not a separate class from verbs and that N280 may be not a specific component for only prepositions (or closed-class words).展开更多
The topside floatover installation is always a great challenge and is sensitive to environmental conditions.In this study,experimental analysis on the mating operation of the floatover installation in different wave h...The topside floatover installation is always a great challenge and is sensitive to environmental conditions.In this study,experimental analysis on the mating operation of the floatover installation in different wave headings is presented.The continuous mating operation using the rapid transfer technique was experimentally simulated with the assistance of the jacking system and the ballast system.In the continuous transfer modeling,the topsides loads were transferred onto the jacket by several consecutive steps,including the first rapid jack-down for the 30%loads,continuous 30%−70%load transfer and the second repaid jack-down for the remaining 30%loads.Motions of the barge and the topsides as well as loads on the Deck Support Unite(DSU)and the Leg Mating Unite(LMU)in different wave headings were measured.Experimental results illustrated the complex motion behavior and load characteristics of the continuous transfer operation.Results indicate that the rapid jack-down operations will lead to impact loads and larger lateral DSU loads.The bow quartering seas are much more dangerous as it gives rise to the larger motions and loads.Comparisons with the traditional steady-state modeling indicate that the continuous transfer modeling has greater advantages over the steady-state modeling on predicting the loads.展开更多
To avoid the complicated motion compensation in interferometric inverse synthetic aperture(InISAR)and achieve realtime three-dimensional(3 D)imaging,a novel approach for 3 D imaging of the target only using a single e...To avoid the complicated motion compensation in interferometric inverse synthetic aperture(InISAR)and achieve realtime three-dimensional(3 D)imaging,a novel approach for 3 D imaging of the target only using a single echo is presented.This method is based on an isolated scatterer model assumption,thus the scatterers in the beam can be extracted individually.The radial range of each scatterer is estimated by the maximal likelihood estimation.Then,the horizontal and vertical wave path difference is derived by using the phase comparison technology for each scatterer,respectively.Finally,by utilizing the relationship among the 3 D coordinates,the radial range,the horizontal and vertical wave path difference,the 3 D image of the target can be reconstructed.The reconstructed image is free from the limitation in InISAR that the image plane depends on the target's own motions and on its relative position with respect to the radar.Furthermore,a phase ambiguity resolution method is adopted to ensure the success of the 3 D imaging when phase ambiguity occurs.It can be noted that the proposed phase ambiguity resolution method only uses one antenna pair and does not require a priori knowledge,whereas the existing phase ambiguity methods may require two or more antenna pairs or a priori knowledge for phase unwarping.To evaluate the performance of the proposed method,the theoretical analyses on estimation accuracy are presented and the simulations in various scenarios are also carried out.展开更多
To address the problem of poor wave resistance of existing offshore floating wind turbines,a new type of semisubmersible platform with truncated-cone-type upper pontoons is proposed by combining the characteristics of...To address the problem of poor wave resistance of existing offshore floating wind turbines,a new type of semisubmersible platform with truncated-cone-type upper pontoons is proposed by combining the characteristics of offshore wind turbine semi-submersible floating platforms.Based on the coupled hydrodynamic,aerodynamic,and mooring force physical fields of FAST,the surge,heave,pitch,and yaw motions responses of the floating wind turbine under different wave heights and periods are obtained,and the mooring line tension responses are also obtained;and compare the dynamic response of the new semi-submersible platform with the OC4-DeepCwind platformat six degrees of freedom.The results show that different wave conditions have obvious effects on the heave and pitch motions of the new floating wind turbine,and fewer effects on the surge and yaw motions;the tensegrity response of the mooring system is more affected by the wave conditions;compared with the OC4-DeepCwind floating wind turbine,the pitch and roll response of the new floating wind turbine has been significantly reduced and has good stability.展开更多
In this study,Qilian Mountain active source airgun signals recorded at 79 stations were obtained after stacking waveforms from July 2015 to December 2016.Based on analysis of the amplitude variation characteristics of...In this study,Qilian Mountain active source airgun signals recorded at 79 stations were obtained after stacking waveforms from July 2015 to December 2016.Based on analysis of the amplitude variation characteristics of the airgun signals,the following conclusions were drawn:along the NW-SE fault distribution direction of the Qilian Mountain area,the decrease in amplitude of airgun signals was relatively slow in relation to the epicentral distance,while the decrease in amplitude in the direction perpendicular to the fault was relatively fast.This difference may be related to the energy loss of seismic waves reflecting and scattering by the regional faults mainly distributed along the NW-SE direction,which are caused by tectonic compression of the QinghaiTibet and Alxa blocks.展开更多
The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency...The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency range. The dispersion relation is solved by utilizing the Rayleigh-Fourier method by expressing the radial function in terms of the Fourier series. A highly accurate synthetic technique is also applied to determine the complete dispersion characteristics from experimentally measured resonances (cold test). Periodic structures resonate at specific frequencies when the terminals are shorted numerical calculation, synthetic technique and cold appropriately. The dispersion characteristics obtained from test are compared, and an excellent agreement is achieved.展开更多
Graphene-based surface plasmon waveguides(SPWs) show high confinement well beyond the diffraction limit at terahertz frequencies. By combining a graphene SPW and nonlinear material, we propose a novel graphene/AlGaAs ...Graphene-based surface plasmon waveguides(SPWs) show high confinement well beyond the diffraction limit at terahertz frequencies. By combining a graphene SPW and nonlinear material, we propose a novel graphene/AlGaAs SPW structure for terahertz wave difference frequency generation(DFG) under near-infrared pumps.The composite waveguide, which supports single-mode operation at terahertz frequencies and guides two pumps by a high-index-contrast AlGaAs∕Al Oxstructure, can confine terahertz waves tightly and realize good mode field overlap of three waves. The phase-matching condition is satisfied via artificial birefringence in an AlGaAs∕Al Ox waveguide together with the tunability of graphene, and the phase-matching terahertz wave frequency varies from 4 to 7 THz when the Fermi energy level of graphene changes from 0.848 to 2.456 eV. Based on the coupled-mode theory, we investigate the power-normalized conversion efficiency for the tunable terahertz wave DFG process by using the finite difference method under continuous wave pumps, where the tunable bandwidth can reach 2 THz with considerable conversion efficiency. To exploit the high peak powers of pulses, we also discuss optical pulse evolutions for pulse-pumped terahertz wave DFG processes.展开更多
The finite-difference time-domain (FDTD) method is proposed for analyzing the surface acoustic wave (SAW) propagation in two-dimensional (2D) piezoelectric phononic crystals (PCs) at radio frequency (RF), an...The finite-difference time-domain (FDTD) method is proposed for analyzing the surface acoustic wave (SAW) propagation in two-dimensional (2D) piezoelectric phononic crystals (PCs) at radio frequency (RF), and also experiments are established to demonstrate its analysis result of the PCs' band gaps. The FDTD method takes the piezoelectric effect of PCs into account, in which periodic boundary conditions are used to decrease memory/time consumption and the perfectly matched layer boundary conditions are adopted as the SAW absorbers to attenuate artificial reflections. Two SAW delay lines are established with/without piezoelectric PCs located between interdigital transducers. By removing several echoes with window gating function in time domain, delay lines transmission function is achieved. The PCs' transmission functions and band gaps are obtained by comparing them in these two delay lines. When Aluminum/128°YX-LiNbO3 is adopted as scatter and substrate material, the PCs' band gap is calculated by this FDTD method and COMSOL respectively. Results show that computational results of FDTD agree well with experimental results and are better than that of COMSOL.展开更多
The nonlocal symmetries of the Burgers equation are explicitly given by the truncated Painlevé method.The auto-B?cklund transformation and group invariant solutions are obtained via the localization procedure for...The nonlocal symmetries of the Burgers equation are explicitly given by the truncated Painlevé method.The auto-B?cklund transformation and group invariant solutions are obtained via the localization procedure for the nonlocal residual symmetries. Furthermore, the interaction solutions of the solition-Kummer waves and the solition-Airy waves are obtained.展开更多
基金supported by the grant NSC 98-2115-M-194-010-MY2
文摘We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we propose a rule for a time-stepping,which is a variant of what was successfully used in the case of nonlinear parabolic equations. A numerical blow-up time is defined and is proved to converge, under a certain hypothesis, to the real blow-up time as the grid size tends to zero.
基金the National Social Science Foundation of China (No. 03BYY013) the Science Foundation of Jiangsu Province (No. QL200504).
文摘Objective To compare the event-related potentials (ERPs) waves of verbs and prepositions in the brain. Methods We recorded ERPs in the brain while participants judged the legality of the collocation for verbs and "preposition". Results Both verbs and prepositions elicited a negativity at the frontal site in 230-330 ms and 350-500 ms window. No difference was seen in 230-330 ms and 350-500 ms window; In difference waves, a negativity was elicited in the left and fight hemisphere at about 270-400 ms and 470-600 ms window for both open and closed-class words. Conclusion These may demonstrate that prepositions in modem Chinese are probably not a separate class from verbs and that N280 may be not a specific component for only prepositions (or closed-class words).
文摘The topside floatover installation is always a great challenge and is sensitive to environmental conditions.In this study,experimental analysis on the mating operation of the floatover installation in different wave headings is presented.The continuous mating operation using the rapid transfer technique was experimentally simulated with the assistance of the jacking system and the ballast system.In the continuous transfer modeling,the topsides loads were transferred onto the jacket by several consecutive steps,including the first rapid jack-down for the 30%loads,continuous 30%−70%load transfer and the second repaid jack-down for the remaining 30%loads.Motions of the barge and the topsides as well as loads on the Deck Support Unite(DSU)and the Leg Mating Unite(LMU)in different wave headings were measured.Experimental results illustrated the complex motion behavior and load characteristics of the continuous transfer operation.Results indicate that the rapid jack-down operations will lead to impact loads and larger lateral DSU loads.The bow quartering seas are much more dangerous as it gives rise to the larger motions and loads.Comparisons with the traditional steady-state modeling indicate that the continuous transfer modeling has greater advantages over the steady-state modeling on predicting the loads.
基金supported by the Science and Technique Commission Foundation of Fujian Province(2018H6023)。
文摘To avoid the complicated motion compensation in interferometric inverse synthetic aperture(InISAR)and achieve realtime three-dimensional(3 D)imaging,a novel approach for 3 D imaging of the target only using a single echo is presented.This method is based on an isolated scatterer model assumption,thus the scatterers in the beam can be extracted individually.The radial range of each scatterer is estimated by the maximal likelihood estimation.Then,the horizontal and vertical wave path difference is derived by using the phase comparison technology for each scatterer,respectively.Finally,by utilizing the relationship among the 3 D coordinates,the radial range,the horizontal and vertical wave path difference,the 3 D image of the target can be reconstructed.The reconstructed image is free from the limitation in InISAR that the image plane depends on the target's own motions and on its relative position with respect to the radar.Furthermore,a phase ambiguity resolution method is adopted to ensure the success of the 3 D imaging when phase ambiguity occurs.It can be noted that the proposed phase ambiguity resolution method only uses one antenna pair and does not require a priori knowledge,whereas the existing phase ambiguity methods may require two or more antenna pairs or a priori knowledge for phase unwarping.To evaluate the performance of the proposed method,the theoretical analyses on estimation accuracy are presented and the simulations in various scenarios are also carried out.
基金funded by the National Key R&D Program of China(Grant Number 2018YFB1501203)funded by the National Natural Science Foundation of China(Grant Number 52075305).
文摘To address the problem of poor wave resistance of existing offshore floating wind turbines,a new type of semisubmersible platform with truncated-cone-type upper pontoons is proposed by combining the characteristics of offshore wind turbine semi-submersible floating platforms.Based on the coupled hydrodynamic,aerodynamic,and mooring force physical fields of FAST,the surge,heave,pitch,and yaw motions responses of the floating wind turbine under different wave heights and periods are obtained,and the mooring line tension responses are also obtained;and compare the dynamic response of the new semi-submersible platform with the OC4-DeepCwind platformat six degrees of freedom.The results show that different wave conditions have obvious effects on the heave and pitch motions of the new floating wind turbine,and fewer effects on the surge and yaw motions;the tensegrity response of the mooring system is more affected by the wave conditions;compared with the OC4-DeepCwind floating wind turbine,the pitch and roll response of the new floating wind turbine has been significantly reduced and has good stability.
基金the National Key Research and Development Project(No.2018YFC1503206)the National Natural Science Foundation of China(No.41674046).
文摘In this study,Qilian Mountain active source airgun signals recorded at 79 stations were obtained after stacking waveforms from July 2015 to December 2016.Based on analysis of the amplitude variation characteristics of the airgun signals,the following conclusions were drawn:along the NW-SE fault distribution direction of the Qilian Mountain area,the decrease in amplitude of airgun signals was relatively slow in relation to the epicentral distance,while the decrease in amplitude in the direction perpendicular to the fault was relatively fast.This difference may be related to the energy loss of seismic waves reflecting and scattering by the regional faults mainly distributed along the NW-SE direction,which are caused by tectonic compression of the QinghaiTibet and Alxa blocks.
文摘The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency range. The dispersion relation is solved by utilizing the Rayleigh-Fourier method by expressing the radial function in terms of the Fourier series. A highly accurate synthetic technique is also applied to determine the complete dispersion characteristics from experimentally measured resonances (cold test). Periodic structures resonate at specific frequencies when the terminals are shorted numerical calculation, synthetic technique and cold appropriately. The dispersion characteristics obtained from test are compared, and an excellent agreement is achieved.
基金National Natural Science Foundation of China(NSFC)(11547187,11405073,61405073)Shandong Provincial Key R&D Program(2017CXGC0416)
文摘Graphene-based surface plasmon waveguides(SPWs) show high confinement well beyond the diffraction limit at terahertz frequencies. By combining a graphene SPW and nonlinear material, we propose a novel graphene/AlGaAs SPW structure for terahertz wave difference frequency generation(DFG) under near-infrared pumps.The composite waveguide, which supports single-mode operation at terahertz frequencies and guides two pumps by a high-index-contrast AlGaAs∕Al Oxstructure, can confine terahertz waves tightly and realize good mode field overlap of three waves. The phase-matching condition is satisfied via artificial birefringence in an AlGaAs∕Al Ox waveguide together with the tunability of graphene, and the phase-matching terahertz wave frequency varies from 4 to 7 THz when the Fermi energy level of graphene changes from 0.848 to 2.456 eV. Based on the coupled-mode theory, we investigate the power-normalized conversion efficiency for the tunable terahertz wave DFG process by using the finite difference method under continuous wave pumps, where the tunable bandwidth can reach 2 THz with considerable conversion efficiency. To exploit the high peak powers of pulses, we also discuss optical pulse evolutions for pulse-pumped terahertz wave DFG processes.
基金supported by the National Natural Science Foundation of China(11174318,11304346,61106081)Chinese Postdoctoral Science Foundation(2011M501204,2013T60718)+2 种基金National High Technology Research and Development Program(863 Program)(SS2013AA041103)Beijing Municipal Science and Technology Commission Project(Z141100003814016)the Fundamental Research Funds for the Central Universities(HUST:2013QN038)
文摘The finite-difference time-domain (FDTD) method is proposed for analyzing the surface acoustic wave (SAW) propagation in two-dimensional (2D) piezoelectric phononic crystals (PCs) at radio frequency (RF), and also experiments are established to demonstrate its analysis result of the PCs' band gaps. The FDTD method takes the piezoelectric effect of PCs into account, in which periodic boundary conditions are used to decrease memory/time consumption and the perfectly matched layer boundary conditions are adopted as the SAW absorbers to attenuate artificial reflections. Two SAW delay lines are established with/without piezoelectric PCs located between interdigital transducers. By removing several echoes with window gating function in time domain, delay lines transmission function is achieved. The PCs' transmission functions and band gaps are obtained by comparing them in these two delay lines. When Aluminum/128°YX-LiNbO3 is adopted as scatter and substrate material, the PCs' band gap is calculated by this FDTD method and COMSOL respectively. Results show that computational results of FDTD agree well with experimental results and are better than that of COMSOL.
基金Supported by the Global Change Research Program China under Grant No.2015CB953904the National Natural Science Foundations of China under Grant Nos.11435005,11175092,and 11205092+1 种基金Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No.ZF1213K.C.Wong Magna Fund in Ningbo University
文摘The nonlocal symmetries of the Burgers equation are explicitly given by the truncated Painlevé method.The auto-B?cklund transformation and group invariant solutions are obtained via the localization procedure for the nonlocal residual symmetries. Furthermore, the interaction solutions of the solition-Kummer waves and the solition-Airy waves are obtained.