A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability ...A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.展开更多
Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The ex...Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The existence of optimal controls for the systems is given. Finally, two examples are provided to show the application of our results.展开更多
In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniform...In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.展开更多
Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Alta...Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Altay and Basar [5] and Altay, Basar, and Mursaleen [7] introduced the Euler sequence spaces e0^r, ec^r, and e∞^r, respectively. The main purpose of this article is to introduce the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m))consisting of all sequences whose mth order differences are in the Euler spaces e0^r, ec^r, and e∞^r, respectively. Moreover, the authors give some topological properties and inclusion relations, and determine the α-, β-, and γ-duals of the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m)), and the Schauder basis of the spaces e0^r△^(m)), ec^r△^(m)). The last section of the article is devoted to the characterization of some matrix mappings on the sequence space ec^r△^(m)).展开更多
In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ (...In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ ( m ) ) and e r ∞ (△ ( m ) ) and characterized some classes of matrix transformations on them. In our paper, we add a new supplementary aspect to their research by characterizing classes of compact operators on those spaces. For that purpose, the spaces are treated as the matrix domains of a triangle in the classical sequence spaces c 0 , c and ∞ . The main tool for our characterizations is the Hausdorff measure of noncompactness.展开更多
In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equatio...In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.展开更多
In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough num...In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.展开更多
In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the a...In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.展开更多
In this paper we study the Oscillatory behaviour of the second order delay differenceequation.(1)△(r<sub>n</sub>△A<sub>n</sub>)+P<sub>n</sub>A<sub>n-k</sub>=0,n=n&...In this paper we study the Oscillatory behaviour of the second order delay differenceequation.(1)△(r<sub>n</sub>△A<sub>n</sub>)+P<sub>n</sub>A<sub>n-k</sub>=0,n=n<sub>0</sub>,n<sub>0</sub>+1……where{P<sub>n</sub>}(?)is a nonnegative Sequenceof real number,(?)is a positive sequence of real number with sum from n=n<sub>0</sub> to +∞(1/r<sub>n</sub>)=+∞,K is a positive integer and △A<sub>n</sub>=A<sub>n+1</sub>-A<sub>n</sub> we prove that each one of following conditions.imples that al solutions of Eq(1)oscillate,where R<sub>n</sub>=sum from i=n<sub>0</sub> to n(1/r<sub>i</sub>展开更多
Computational aeroacoustics (CAA) is an interdiscipline of aeroacoustics and computational fluid dynamics (CFD) for the investigation of sound generation and propagation from various aeroacoustics problems. In thi...Computational aeroacoustics (CAA) is an interdiscipline of aeroacoustics and computational fluid dynamics (CFD) for the investigation of sound generation and propagation from various aeroacoustics problems. In this review, the foundation and research scope of CAA are introduced firstly. A review of the early advances and applications of CAA is then briefly surveyed, focusing on two key issues, namely, high order finite difference scheme and non-reflecting boundary condition. Furthermore, the advances of CAA during the past five years are highlighted. Finally, the future prospective of CAA is briefly discussed.展开更多
In this paper, we investigate the value distribution of the difference counterpart △f(z)- af(z)^n of f′(z)- af(z)^n and obtain an almost direct difference analogue of result of Hayman.
In this paper we shall extend the paper [1] to a separate Taylor's Theorem with respect to a lot of centers, namely Newton's Theorem Of a lot of centers. From it we obtain the analogous results in the paper [2...In this paper we shall extend the paper [1] to a separate Taylor's Theorem with respect to a lot of centers, namely Newton's Theorem Of a lot of centers. From it we obtain the analogous results in the paper [2]. namely an interpolation formula of the difference of higher order. Finally we give their applications.展开更多
In this paper, we give necessary and sufficient conditions for oscillation of bounded solutions of nonlinear second order difference equation △(pn△yn)+ qnf(yn-rn) = 0. Obtained results improve theorems in the litera...In this paper, we give necessary and sufficient conditions for oscillation of bounded solutions of nonlinear second order difference equation △(pn△yn)+ qnf(yn-rn) = 0. Obtained results improve theorems in the literature [3,6,7].展开更多
This paper revisits the Space-Time Gradient(STG) method which was developed for efficient analysis of unsteady flows due to rotor–stator interaction and presents the method from an alternative time-clocking perspecti...This paper revisits the Space-Time Gradient(STG) method which was developed for efficient analysis of unsteady flows due to rotor–stator interaction and presents the method from an alternative time-clocking perspective. The STG method requires reordering of blade passages according to their relative clocking positions with respect to blades of an adjacent blade row. As the space-clocking is linked to an equivalent time-clocking, the passage reordering can be performed according to the alternative time-clocking. With the time-clocking perspective, unsteady flow solutions from different passages of the same blade row are mapped to flow solutions of the same passage at different time instants or phase angles. Accordingly, the time derivative of the unsteady flow equation is discretized in time directly, which is more natural than transforming the time derivative to a spatial one as with the original STG method. To improve the solution accuracy, a ninth order difference scheme has been investigated for discretizing the time derivative. To achieve a stable solution for the high order scheme, the implicit solution method of Lower-Upper Symmetric GaussSeidel/Gauss-Seidel(LU-SGS/GS) has been employed. The NASA Stage 35 and its blade-countreduced variant are used to demonstrate the validity of the time-clocking based passage reordering and the advantages of the high order difference scheme for the STG method. Results from an existing harmonic balance flow solver are also provided to contrast the two methods in terms of solution stability and computational cost.展开更多
In this paper, a difference scheme with nonuniform meshes is proposed for the initial-boundary problem of the nonlinear parabolic system. It is proved that the difference scheme is second order convergent in both spac...In this paper, a difference scheme with nonuniform meshes is proposed for the initial-boundary problem of the nonlinear parabolic system. It is proved that the difference scheme is second order convergent in both space and time.展开更多
In this paper, we prove the existence of a positive solution and a negative solution for a class of second order difference equations with dependence on the first order difference. Our proofs are based on the Mountain...In this paper, we prove the existence of a positive solution and a negative solution for a class of second order difference equations with dependence on the first order difference. Our proofs are based on the Mountain Pass Lemma and iterative methods.展开更多
In this paper,we study the finite element approximation for nonlinear thermal equation.Because the nonlinearity of the equation,our theoretical analysis is based on the error of temporal and spatial discretization.We ...In this paper,we study the finite element approximation for nonlinear thermal equation.Because the nonlinearity of the equation,our theoretical analysis is based on the error of temporal and spatial discretization.We consider a fully discrete second order backward difference formula based on a finite element method to approximate the temperature and electric potential,and establish optimal L^(2) error estimates for the fully discrete finite element solution without any restriction on the time-step size.The discrete solution is bounded in infinite norm.Finally,several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 20373021) and Natural Science Foundation of Liaoning Province (Grant No 20052151).
文摘A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.
基金supported by the Science and Technology Planning Project(2014JQ1041)of Shaanxi Provincethe Scientic Research Program Funded by Shaanxi Provincial Education Department(14JK1300)+1 种基金the Research Fund for the Doctoral Program(BS1342)of Xi’an Polytechnic Universitysupported by Ministerio de Economíay Competitividad and EC fund FEDER,Project no.MTM2010-15314,Spain
文摘Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The existence of optimal controls for the systems is given. Finally, two examples are provided to show the application of our results.
文摘In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.
文摘Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Altay and Basar [5] and Altay, Basar, and Mursaleen [7] introduced the Euler sequence spaces e0^r, ec^r, and e∞^r, respectively. The main purpose of this article is to introduce the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m))consisting of all sequences whose mth order differences are in the Euler spaces e0^r, ec^r, and e∞^r, respectively. Moreover, the authors give some topological properties and inclusion relations, and determine the α-, β-, and γ-duals of the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m)), and the Schauder basis of the spaces e0^r△^(m)), ec^r△^(m)). The last section of the article is devoted to the characterization of some matrix mappings on the sequence space ec^r△^(m)).
基金supported by the research project#144003 of the Serbian Ministry of Science, Technology and Development
文摘In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ ( m ) ) and e r ∞ (△ ( m ) ) and characterized some classes of matrix transformations on them. In our paper, we add a new supplementary aspect to their research by characterizing classes of compact operators on those spaces. For that purpose, the spaces are treated as the matrix domains of a triangle in the classical sequence spaces c 0 , c and ∞ . The main tool for our characterizations is the Hausdorff measure of noncompactness.
基金This research was supported by the National Natural Science Foundation of China
文摘In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.
基金This work has been partially supported by the "Generalitat Valenciana" grant GV1118/93the Spanish D. G. I. C. Y.T. grant PB93-0381
文摘In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.
文摘In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.
文摘In this paper we study the Oscillatory behaviour of the second order delay differenceequation.(1)△(r<sub>n</sub>△A<sub>n</sub>)+P<sub>n</sub>A<sub>n-k</sub>=0,n=n<sub>0</sub>,n<sub>0</sub>+1……where{P<sub>n</sub>}(?)is a nonnegative Sequenceof real number,(?)is a positive sequence of real number with sum from n=n<sub>0</sub> to +∞(1/r<sub>n</sub>)=+∞,K is a positive integer and △A<sub>n</sub>=A<sub>n+1</sub>-A<sub>n</sub> we prove that each one of following conditions.imples that al solutions of Eq(1)oscillate,where R<sub>n</sub>=sum from i=n<sub>0</sub> to n(1/r<sub>i</sub>
基金Project supported by the National Basic Research Program of China(No.2012CB720202)the National Natural Science Foundation of China(No.51476005)the 111 Project of China(No.B07009)
文摘Computational aeroacoustics (CAA) is an interdiscipline of aeroacoustics and computational fluid dynamics (CFD) for the investigation of sound generation and propagation from various aeroacoustics problems. In this review, the foundation and research scope of CAA are introduced firstly. A review of the early advances and applications of CAA is then briefly surveyed, focusing on two key issues, namely, high order finite difference scheme and non-reflecting boundary condition. Furthermore, the advances of CAA during the past five years are highlighted. Finally, the future prospective of CAA is briefly discussed.
基金supported by the National Natural Science Foundation of China(11171119)
文摘In this paper, we investigate the value distribution of the difference counterpart △f(z)- af(z)^n of f′(z)- af(z)^n and obtain an almost direct difference analogue of result of Hayman.
文摘In this paper we shall extend the paper [1] to a separate Taylor's Theorem with respect to a lot of centers, namely Newton's Theorem Of a lot of centers. From it we obtain the analogous results in the paper [2]. namely an interpolation formula of the difference of higher order. Finally we give their applications.
基金Supported by the National Natural Science Foundation of China (19571023) the Natural Science Foundation of Hebei province (100139)
文摘In this paper, we give necessary and sufficient conditions for oscillation of bounded solutions of nonlinear second order difference equation △(pn△yn)+ qnf(yn-rn) = 0. Obtained results improve theorems in the literature [3,6,7].
基金co-supported by the National Natural Science Foundation of China(No.51976172)the National Science and Technology Major Project of China(No.2017-Ⅱ-0009-0023)。
文摘This paper revisits the Space-Time Gradient(STG) method which was developed for efficient analysis of unsteady flows due to rotor–stator interaction and presents the method from an alternative time-clocking perspective. The STG method requires reordering of blade passages according to their relative clocking positions with respect to blades of an adjacent blade row. As the space-clocking is linked to an equivalent time-clocking, the passage reordering can be performed according to the alternative time-clocking. With the time-clocking perspective, unsteady flow solutions from different passages of the same blade row are mapped to flow solutions of the same passage at different time instants or phase angles. Accordingly, the time derivative of the unsteady flow equation is discretized in time directly, which is more natural than transforming the time derivative to a spatial one as with the original STG method. To improve the solution accuracy, a ninth order difference scheme has been investigated for discretizing the time derivative. To achieve a stable solution for the high order scheme, the implicit solution method of Lower-Upper Symmetric GaussSeidel/Gauss-Seidel(LU-SGS/GS) has been employed. The NASA Stage 35 and its blade-countreduced variant are used to demonstrate the validity of the time-clocking based passage reordering and the advantages of the high order difference scheme for the STG method. Results from an existing harmonic balance flow solver are also provided to contrast the two methods in terms of solution stability and computational cost.
基金Supported by the National Natural Science Foundation of China(No.10671060,No.10871061)the Youth Foundation of Hunan Education Bureau(No.06B037)the Construct Program of the Key Discipline in Hunan Province
文摘In this paper, a difference scheme with nonuniform meshes is proposed for the initial-boundary problem of the nonlinear parabolic system. It is proved that the difference scheme is second order convergent in both space and time.
基金Foundation item: the National Natural Science Foundation of China (No. 60574075) Innovation Program of Shanghai Municipal Education Commissiion (No. 08YZ93) and Shanghai Leading Academic Discipline Project (No. S30501).
文摘In this paper, we prove the existence of a positive solution and a negative solution for a class of second order difference equations with dependence on the first order difference. Our proofs are based on the Mountain Pass Lemma and iterative methods.
文摘In this paper,we study the finite element approximation for nonlinear thermal equation.Because the nonlinearity of the equation,our theoretical analysis is based on the error of temporal and spatial discretization.We consider a fully discrete second order backward difference formula based on a finite element method to approximate the temperature and electric potential,and establish optimal L^(2) error estimates for the fully discrete finite element solution without any restriction on the time-step size.The discrete solution is bounded in infinite norm.Finally,several numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method.