NPN-input bipolar operational amplifiers LM741 were irradiated with ^60Coγ-ray, 3 MeV protons and10 MeV protons respectively at different biases to investigating the proton radiation response of the NPN-input operati...NPN-input bipolar operational amplifiers LM741 were irradiated with ^60Coγ-ray, 3 MeV protons and10 MeV protons respectively at different biases to investigating the proton radiation response of the NPN-input operational amplifier. The comparison of protons with^60Coγ-rays showed that the proton radiation mainly induced ionization damage in LM741. Under different bias conditions, the radiation sensitivity is different; zero biased devices show more radiation sensitivity in the input biased current than forward biased devices. Supply current(±Icc)is another parameter that is sensitive to proton radiation,^60Coγ-ray, 3 MeV and 10 MeV proton irradiation would induce a different irradiation response in ±Icc, which is caused by different ionization energy deposition and displacement energy deposition of^60Coγ-ray, 3 MeV and 10 MeV proton irradiation.展开更多
For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias....For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias.Based on this property,Bogdanov et al.proposed a related-key statistical distinguisher and turned it into key-recovery attacks on LBlock and TWINE-128.In this paper,we propose a new related-key model by combining multidimensional linear cryptanalysis with key difference invariant bias.The main theoretical advantage is that our new model does not depend on statistical independence of linear approximations.We demonstrate our cryptanalysis technique by performing key recovery attacks on LBlock and TWINE-128.By using the relations of the involved round keys to reduce the number of guessed subkey bits.Moreover,the partial-compression technique is used to reduce the time complexity.We can recover the master key of LBlock up to 25 rounds with about 260.4 distinct known plaintexts,278.85 time complexity and 261 bytes of memory requirements.Our attack can recover the master key of TWINE-128 up to 28 rounds with about 261.5 distinct known plaintexts,2126.15 time complexity and 261 bytes of memory requirements.The results are the currently best ones on cryptanalysis of LBlock and TWINE-128.展开更多
For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias....For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias.Based on this property,Bogdanov et al.proposed a related-key statistical distinguisher and turned it into key-recovery attacks on LBlock and TWINE-128.In this paper,we propose a new related-key model by combining multidimensional linear cryptanalysis with key difference invariant bias.The main theoretical advantage is that our new model does not depend on statistical independence of linear approximations.We demonstrate our cryptanalysis technique by performing key recovery attacks on LBlock and TWINE-128.By using the relations of the involved round keys to reduce the number of guessed subkey bits.Moreover,the partial-compression technique is used to reduce the time complexity.We can recover the master key of LBlock up to 25 rounds with about 2^(60.4)distinct known plaintexts,2^(78.85)time complexity and 2^(61)bytes of memory requirements.Our attack can recover the master key of TWINE-128 up to 28 rounds with about 2^(61.5)distinct known plaintexts,2^(126.15)time complexity and 261 bytes of memory requirements.The results are the currently best ones on cryptanalysis of LBlock and TWINE-128.展开更多
This paper presents the total ionizing dose test results at different biases and dose rates for AD9233, which is fabricated using a modern CMOS process. The experimental results show that the digital parts are more se...This paper presents the total ionizing dose test results at different biases and dose rates for AD9233, which is fabricated using a modern CMOS process. The experimental results show that the digital parts are more sensitive than the other parts. Power down is the worst-case bias, and this phenomenon is first found in the total ionizing dose effect of analog-to-digital converters. We also find that the AC as well as DC parameters are sensitive to the total ionizing dose at a high dose rate, whereas none of the parameters are sensitive at a low dose rate. The test facilities, results and analysis are presented in detail.展开更多
文摘NPN-input bipolar operational amplifiers LM741 were irradiated with ^60Coγ-ray, 3 MeV protons and10 MeV protons respectively at different biases to investigating the proton radiation response of the NPN-input operational amplifier. The comparison of protons with^60Coγ-rays showed that the proton radiation mainly induced ionization damage in LM741. Under different bias conditions, the radiation sensitivity is different; zero biased devices show more radiation sensitivity in the input biased current than forward biased devices. Supply current(±Icc)is another parameter that is sensitive to proton radiation,^60Coγ-ray, 3 MeV and 10 MeV proton irradiation would induce a different irradiation response in ±Icc, which is caused by different ionization energy deposition and displacement energy deposition of^60Coγ-ray, 3 MeV and 10 MeV proton irradiation.
基金the National Natural Science Foundation of China(Grant No.61379138).
文摘For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias.Based on this property,Bogdanov et al.proposed a related-key statistical distinguisher and turned it into key-recovery attacks on LBlock and TWINE-128.In this paper,we propose a new related-key model by combining multidimensional linear cryptanalysis with key difference invariant bias.The main theoretical advantage is that our new model does not depend on statistical independence of linear approximations.We demonstrate our cryptanalysis technique by performing key recovery attacks on LBlock and TWINE-128.By using the relations of the involved round keys to reduce the number of guessed subkey bits.Moreover,the partial-compression technique is used to reduce the time complexity.We can recover the master key of LBlock up to 25 rounds with about 260.4 distinct known plaintexts,278.85 time complexity and 261 bytes of memory requirements.Our attack can recover the master key of TWINE-128 up to 28 rounds with about 261.5 distinct known plaintexts,2126.15 time complexity and 261 bytes of memory requirements.The results are the currently best ones on cryptanalysis of LBlock and TWINE-128.
基金supported by the National Natural Science Foundation of China(Grant No.61379138).
文摘For block ciphers,Bogdanov et al.found that there are some linear approximations satisfying that their biases are deterministically invariant under key difference.This property is called key difference invariant bias.Based on this property,Bogdanov et al.proposed a related-key statistical distinguisher and turned it into key-recovery attacks on LBlock and TWINE-128.In this paper,we propose a new related-key model by combining multidimensional linear cryptanalysis with key difference invariant bias.The main theoretical advantage is that our new model does not depend on statistical independence of linear approximations.We demonstrate our cryptanalysis technique by performing key recovery attacks on LBlock and TWINE-128.By using the relations of the involved round keys to reduce the number of guessed subkey bits.Moreover,the partial-compression technique is used to reduce the time complexity.We can recover the master key of LBlock up to 25 rounds with about 2^(60.4)distinct known plaintexts,2^(78.85)time complexity and 2^(61)bytes of memory requirements.Our attack can recover the master key of TWINE-128 up to 28 rounds with about 2^(61.5)distinct known plaintexts,2^(126.15)time complexity and 261 bytes of memory requirements.The results are the currently best ones on cryptanalysis of LBlock and TWINE-128.
基金supported by the National Natural Science Foundation of China(No.11005152)
文摘This paper presents the total ionizing dose test results at different biases and dose rates for AD9233, which is fabricated using a modern CMOS process. The experimental results show that the digital parts are more sensitive than the other parts. Power down is the worst-case bias, and this phenomenon is first found in the total ionizing dose effect of analog-to-digital converters. We also find that the AC as well as DC parameters are sensitive to the total ionizing dose at a high dose rate, whereas none of the parameters are sensitive at a low dose rate. The test facilities, results and analysis are presented in detail.