The postmortem redistribution of aconitine(AC) and its influencing factors by orally ingested Aconitum brachypodum Diels (AbD) in rabbits were studied. The results showed that postmortem AC redistribution did exist, a...The postmortem redistribution of aconitine(AC) and its influencing factors by orally ingested Aconitum brachypodum Diels (AbD) in rabbits were studied. The results showed that postmortem AC redistribution did exist, and the diffusion along a concentration gradient was the major influencing factor on it. Change of temperature and incomplete distribution in life also influenced it.Besides those mentioned above, there were other influencing factors. These may be related to postmortem blood movement and toxin released from cells occurring as part of the processes of autolysis and putrefaction.展开更多
The effect of thermal wave at the initial stage for non-conductive Al_2 O_3 powders compact in field assisted sintering technique(FAST) was investigated. The Lord and Shulman type generalized thermoselastic theory was...The effect of thermal wave at the initial stage for non-conductive Al_2 O_3 powders compact in field assisted sintering technique(FAST) was investigated. The Lord and Shulman type generalized thermoselastic theory was introduced to describe the influence of thermal-mechanical interaction, as well as the heat transport and thermal focusing caused by thermal wave propagation. The expression of vacancy concentration difference of the particles was deduced by considering transient thermal stress. Subsequently, the relationship between activation energy and vacancy concentration difference was obtained. The mechanism of surface diffusion, volume diffusion, simultaneous surface and volume diffusion was analyzed. The numerical simulations indicate that low sintering temperature can obtain high local temperature by the superposition effect of thermal wave. Vacancy concentration differences were improved during FAST compared with hot-pressure and pressureless sintering, thereby decreasing the sintering time. By contrast, the activation energy declined with the decrease of vacancy concentration difference in the neck growth process.展开更多
We experimentally compare the output abilities of lightly and heavily doped Ti:Sapphire(Ti:S) amplifiers with diameters as large as 150 mm. Although a lightly doped Ti:S is more favorable to overcome parasitic la...We experimentally compare the output abilities of lightly and heavily doped Ti:Sapphire(Ti:S) amplifiers with diameters as large as 150 mm. Although a lightly doped Ti:S is more favorable to overcome parasitic lasing(PL)and transverse amplified spontaneous emission(TASE), the self-phase-modulation(SPM) effect becomes more pronounced when a longer crystal is used. Recompression of the amplified, stretched pulses can be seriously affected by the SPM effect. We then propose a temporal multi-pulse pump scheme to suppress PL and TASE in a thin, heavily doped Ti:S crystal. This novel temporal multi-pulse pump technique can find potential applications in 10 PW chirped-pulse amplification laser systems.展开更多
文摘The postmortem redistribution of aconitine(AC) and its influencing factors by orally ingested Aconitum brachypodum Diels (AbD) in rabbits were studied. The results showed that postmortem AC redistribution did exist, and the diffusion along a concentration gradient was the major influencing factor on it. Change of temperature and incomplete distribution in life also influenced it.Besides those mentioned above, there were other influencing factors. These may be related to postmortem blood movement and toxin released from cells occurring as part of the processes of autolysis and putrefaction.
基金Funded by the National Natural Science Foundation of China(No.11602042)the Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2016jcyjA0259)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJ1601304)
文摘The effect of thermal wave at the initial stage for non-conductive Al_2 O_3 powders compact in field assisted sintering technique(FAST) was investigated. The Lord and Shulman type generalized thermoselastic theory was introduced to describe the influence of thermal-mechanical interaction, as well as the heat transport and thermal focusing caused by thermal wave propagation. The expression of vacancy concentration difference of the particles was deduced by considering transient thermal stress. Subsequently, the relationship between activation energy and vacancy concentration difference was obtained. The mechanism of surface diffusion, volume diffusion, simultaneous surface and volume diffusion was analyzed. The numerical simulations indicate that low sintering temperature can obtain high local temperature by the superposition effect of thermal wave. Vacancy concentration differences were improved during FAST compared with hot-pressure and pressureless sintering, thereby decreasing the sintering time. By contrast, the activation energy declined with the decrease of vacancy concentration difference in the neck growth process.
文摘We experimentally compare the output abilities of lightly and heavily doped Ti:Sapphire(Ti:S) amplifiers with diameters as large as 150 mm. Although a lightly doped Ti:S is more favorable to overcome parasitic lasing(PL)and transverse amplified spontaneous emission(TASE), the self-phase-modulation(SPM) effect becomes more pronounced when a longer crystal is used. Recompression of the amplified, stretched pulses can be seriously affected by the SPM effect. We then propose a temporal multi-pulse pump scheme to suppress PL and TASE in a thin, heavily doped Ti:S crystal. This novel temporal multi-pulse pump technique can find potential applications in 10 PW chirped-pulse amplification laser systems.