The coupled motion of two flexible bodies with different lengths immersed in moving fluid is studied numerically. The flapping frequency, flapping amplitude and average drag coefficient of each body are calculated and...The coupled motion of two flexible bodies with different lengths immersed in moving fluid is studied numerically. The flapping frequency, flapping amplitude and average drag coefficient of each body are calculated and the influences of the arranging manner and separation distance are analyzed. In our simulation, when placed in the flow individually, the flexible body with a longer length will flap in period and the shorter one will maintain still straightly in the flow direction. The numerical results show that, two different flexible structures near placed in moving flow would strongly interact. When they are placed side by side, the existence of the stable shorter flexible body will restrain the flapping of the longer one while the existence of the longer flexible body may also induce the shorter one to flap synchronously. When placed in tandem with the shorter flexible body in upstream, the flapping of the longer one in downstream will be obviously enhanced. In the situation for the longer flexible body placed in upstream of the shorter one, the coupled flapping amplitude and average drag coefficients increase and decrease periodically with increasing the arranging space, and peak values appear as a result of the mediate of the tail wakes.展开更多
Objective To explore effects of decompressive craniectomy on cerebral blood flow volume and brain metabolism in different aged patients with severe traumatic brain injury. Methods 71 cases were divided into three grou...Objective To explore effects of decompressive craniectomy on cerebral blood flow volume and brain metabolism in different aged patients with severe traumatic brain injury. Methods 71 cases were divided into three groups according age: group A( 【 30 years) ,group B ( 30 ~ 50 years) 。展开更多
In this paper, a new lattice hydrodynamic model based on Nagatani's model INagatani T 1998 Physica A 261 5991 is presented by introducing the flow difference effect. The stability condition for the new model is obtai...In this paper, a new lattice hydrodynamic model based on Nagatani's model INagatani T 1998 Physica A 261 5991 is presented by introducing the flow difference effect. The stability condition for the new model is obtained by using the linear stability theory. The result shows that considering the flow difference effect leads to stabilization of the system compared with the original lattice hydrodynamic model. The jamming transitions among the freely moving phase, the coexisting phase, and the uniform congested phase are studied by nonlinear analysis. The modified KdV equation near the critical point is derived to describe the traffic jam, and kink -antikink soliton solutions related to the traffic density waves are obtained. The simulation results are consistent with the theoretical analysis for the new model.展开更多
Numerical solution is presented for the two- dimensional flow of a micropolar fluid between two porous coaxial disks of different permeability for a range of Reynolds number Re (-300≤ Re 〈 0) and permeability para...Numerical solution is presented for the two- dimensional flow of a micropolar fluid between two porous coaxial disks of different permeability for a range of Reynolds number Re (-300≤ Re 〈 0) and permeability parameter A (1.0≤A ≤2.0). The main flow is superimposed by the injection at the surfaces of the two disks. Von Karman's similarity transformations are used to reduce the governing equations of motion to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on the finite difference method is employed to solve these ODEs and Richardson's extrapolation is used to obtain higher order accuracy. The results indicate that the parameters Re and A have a strong influence on the velocity and microrotation profiles, shear stresses at the disks and the position of the viscous/shear layer. The micropolar material constants cl, c2, c3 have profound effect on microrotation as compared to their effect on streamwise and axial velocity profiles. The results of micropolar fluids are compared with the results for Newtonian fluids.展开更多
By introducing a flow difference effect, a modified lattice two-lane traffic flow model is proposed, which is proved to be capable of improving the stability of traffic flow. Both the linear stability condition and th...By introducing a flow difference effect, a modified lattice two-lane traffic flow model is proposed, which is proved to be capable of improving the stability of traffic flow. Both the linear stability condition and the kink-antikink solution derived from the modified Korteweg-de Vries (mKdV) equation are analyzed. Numerical simulations verify the theoretical analysis. Futhermore, the evolution laws under different disturbances in the metastable region are studied.展开更多
A Fourier pseudospectral-finite difference scheme is proposed for unsteady Navier-Stokes equation. It is showed that the numerical solution keeps semi-discrete conservation. The strict error estimation is established....A Fourier pseudospectral-finite difference scheme is proposed for unsteady Navier-Stokes equation. It is showed that the numerical solution keeps semi-discrete conservation. The strict error estimation is established. The numerical results are presented.展开更多
The time evolution of both proton and anti-proton v2 flows from Au+Au collisions at √SNN=7.7 GeV are examined by using both pure cascade and mean-field potential versions of the UrQMD model. Due to a stronger repuls...The time evolution of both proton and anti-proton v2 flows from Au+Au collisions at √SNN=7.7 GeV are examined by using both pure cascade and mean-field potential versions of the UrQMD model. Due to a stronger repulsion at the early stage introduced by the repulsive potentials and hence much less annihilation probabilities, anti-protons are frozen out earlier with smaller v2 values. Therefore, the experimental data of anti-proton v2 as well as the flow difference between proton and anti-proton can be reasonably described with the potential version of UrQMD.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 51479007,51309017,and 11102027the Natural Science Foundation of Hubei Province under Grant No 2015CFA026the Fundamental Research Fund for State Public-Benefic Scientific Institutes of CRSRI under Grant No CKSF2015026/SL
文摘The coupled motion of two flexible bodies with different lengths immersed in moving fluid is studied numerically. The flapping frequency, flapping amplitude and average drag coefficient of each body are calculated and the influences of the arranging manner and separation distance are analyzed. In our simulation, when placed in the flow individually, the flexible body with a longer length will flap in period and the shorter one will maintain still straightly in the flow direction. The numerical results show that, two different flexible structures near placed in moving flow would strongly interact. When they are placed side by side, the existence of the stable shorter flexible body will restrain the flapping of the longer one while the existence of the longer flexible body may also induce the shorter one to flap synchronously. When placed in tandem with the shorter flexible body in upstream, the flapping of the longer one in downstream will be obviously enhanced. In the situation for the longer flexible body placed in upstream of the shorter one, the coupled flapping amplitude and average drag coefficients increase and decrease periodically with increasing the arranging space, and peak values appear as a result of the mediate of the tail wakes.
文摘Objective To explore effects of decompressive craniectomy on cerebral blood flow volume and brain metabolism in different aged patients with severe traumatic brain injury. Methods 71 cases were divided into three groups according age: group A( 【 30 years) ,group B ( 30 ~ 50 years) 。
基金Project supported by the National Basic Research Program of China (Grant No. G2006CB705500)the National Natural Science Foundation of China (Grant Nos. 70501004,70701004 and 70631001)Program for New Century Excellent Talents in University(Grant No. NCET-07-0057)
文摘In this paper, a new lattice hydrodynamic model based on Nagatani's model INagatani T 1998 Physica A 261 5991 is presented by introducing the flow difference effect. The stability condition for the new model is obtained by using the linear stability theory. The result shows that considering the flow difference effect leads to stabilization of the system compared with the original lattice hydrodynamic model. The jamming transitions among the freely moving phase, the coexisting phase, and the uniform congested phase are studied by nonlinear analysis. The modified KdV equation near the critical point is derived to describe the traffic jam, and kink -antikink soliton solutions related to the traffic density waves are obtained. The simulation results are consistent with the theoretical analysis for the new model.
文摘Numerical solution is presented for the two- dimensional flow of a micropolar fluid between two porous coaxial disks of different permeability for a range of Reynolds number Re (-300≤ Re 〈 0) and permeability parameter A (1.0≤A ≤2.0). The main flow is superimposed by the injection at the surfaces of the two disks. Von Karman's similarity transformations are used to reduce the governing equations of motion to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on the finite difference method is employed to solve these ODEs and Richardson's extrapolation is used to obtain higher order accuracy. The results indicate that the parameters Re and A have a strong influence on the velocity and microrotation profiles, shear stresses at the disks and the position of the viscous/shear layer. The micropolar material constants cl, c2, c3 have profound effect on microrotation as compared to their effect on streamwise and axial velocity profiles. The results of micropolar fluids are compared with the results for Newtonian fluids.
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB725400)the National Natural Science Foundation of China (Grant Nos. 71131001, 71071012, and 11001143)the Fundamental Research Funds for the Central Universities of China (Grant No. 2011YJS235)
文摘By introducing a flow difference effect, a modified lattice two-lane traffic flow model is proposed, which is proved to be capable of improving the stability of traffic flow. Both the linear stability condition and the kink-antikink solution derived from the modified Korteweg-de Vries (mKdV) equation are analyzed. Numerical simulations verify the theoretical analysis. Futhermore, the evolution laws under different disturbances in the metastable region are studied.
文摘A Fourier pseudospectral-finite difference scheme is proposed for unsteady Navier-Stokes equation. It is showed that the numerical solution keeps semi-discrete conservation. The strict error estimation is established. The numerical results are presented.
基金the National Natural Science Foundation of China(Grant Nos.1137506211547312,and 11275068)the project sponsored by SRF for ROCS,SEM,and the Doctoral Scientific Research Foundation(Grant No.11447109)
文摘The time evolution of both proton and anti-proton v2 flows from Au+Au collisions at √SNN=7.7 GeV are examined by using both pure cascade and mean-field potential versions of the UrQMD model. Due to a stronger repulsion at the early stage introduced by the repulsive potentials and hence much less annihilation probabilities, anti-protons are frozen out earlier with smaller v2 values. Therefore, the experimental data of anti-proton v2 as well as the flow difference between proton and anti-proton can be reasonably described with the potential version of UrQMD.