A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability ...A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.展开更多
Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The ex...Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The existence of optimal controls for the systems is given. Finally, two examples are provided to show the application of our results.展开更多
In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniform...In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.展开更多
Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Alta...Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Altay and Basar [5] and Altay, Basar, and Mursaleen [7] introduced the Euler sequence spaces e0^r, ec^r, and e∞^r, respectively. The main purpose of this article is to introduce the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m))consisting of all sequences whose mth order differences are in the Euler spaces e0^r, ec^r, and e∞^r, respectively. Moreover, the authors give some topological properties and inclusion relations, and determine the α-, β-, and γ-duals of the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m)), and the Schauder basis of the spaces e0^r△^(m)), ec^r△^(m)). The last section of the article is devoted to the characterization of some matrix mappings on the sequence space ec^r△^(m)).展开更多
Computational aeroacoustics (CAA) is an interdiscipline of aeroacoustics and computational fluid dynamics (CFD) for the investigation of sound generation and propagation from various aeroacoustics problems. In thi...Computational aeroacoustics (CAA) is an interdiscipline of aeroacoustics and computational fluid dynamics (CFD) for the investigation of sound generation and propagation from various aeroacoustics problems. In this review, the foundation and research scope of CAA are introduced firstly. A review of the early advances and applications of CAA is then briefly surveyed, focusing on two key issues, namely, high order finite difference scheme and non-reflecting boundary condition. Furthermore, the advances of CAA during the past five years are highlighted. Finally, the future prospective of CAA is briefly discussed.展开更多
In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ (...In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ ( m ) ) and e r ∞ (△ ( m ) ) and characterized some classes of matrix transformations on them. In our paper, we add a new supplementary aspect to their research by characterizing classes of compact operators on those spaces. For that purpose, the spaces are treated as the matrix domains of a triangle in the classical sequence spaces c 0 , c and ∞ . The main tool for our characterizations is the Hausdorff measure of noncompactness.展开更多
In this paper, we investigate the value distribution of the difference counterpart △f(z)- af(z)^n of f′(z)- af(z)^n and obtain an almost direct difference analogue of result of Hayman.
In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equatio...In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.展开更多
In this paper we shall extend the paper [1] to a separate Taylor's Theorem with respect to a lot of centers, namely Newton's Theorem Of a lot of centers. From it we obtain the analogous results in the paper [2...In this paper we shall extend the paper [1] to a separate Taylor's Theorem with respect to a lot of centers, namely Newton's Theorem Of a lot of centers. From it we obtain the analogous results in the paper [2]. namely an interpolation formula of the difference of higher order. Finally we give their applications.展开更多
In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough num...In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.展开更多
In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the a...In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.展开更多
In this paper we study the Oscillatory behaviour of the second order delay differenceequation.(1)△(r<sub>n</sub>△A<sub>n</sub>)+P<sub>n</sub>A<sub>n-k</sub>=0,n=n&...In this paper we study the Oscillatory behaviour of the second order delay differenceequation.(1)△(r<sub>n</sub>△A<sub>n</sub>)+P<sub>n</sub>A<sub>n-k</sub>=0,n=n<sub>0</sub>,n<sub>0</sub>+1……where{P<sub>n</sub>}(?)is a nonnegative Sequenceof real number,(?)is a positive sequence of real number with sum from n=n<sub>0</sub> to +∞(1/r<sub>n</sub>)=+∞,K is a positive integer and △A<sub>n</sub>=A<sub>n+1</sub>-A<sub>n</sub> we prove that each one of following conditions.imples that al solutions of Eq(1)oscillate,where R<sub>n</sub>=sum from i=n<sub>0</sub> to n(1/r<sub>i</sub>展开更多
In this paper, we give necessary and sufficient conditions for oscillation of bounded solutions of nonlinear second order difference equation △(pn△yn)+ qnf(yn-rn) = 0. Obtained results improve theorems in the litera...In this paper, we give necessary and sufficient conditions for oscillation of bounded solutions of nonlinear second order difference equation △(pn△yn)+ qnf(yn-rn) = 0. Obtained results improve theorems in the literature [3,6,7].展开更多
Suitable stabilization conditions obtained for continuous chaotic systems are generalized to discrete-time chaotic systems. The proposed approach, leading to these conditions for complete synchronization is based on t...Suitable stabilization conditions obtained for continuous chaotic systems are generalized to discrete-time chaotic systems. The proposed approach, leading to these conditions for complete synchronization is based on the use of state feedback and aggregation techniques for stability studies associated with the arrow form matrix for system description. The results are successfully applied for two identical discrete-time hyper chaotic Henon maps with different orders and also for non-identical discrete-time chaotic systems with same order namely the Lozi and the Ushio maps.展开更多
After more than 30 years of rapid urbanization, the overall urbanization rate of China reached 56.1% in 2015.However, despite China's rapid increase in its overall rate of urbanization, clear regional differences ...After more than 30 years of rapid urbanization, the overall urbanization rate of China reached 56.1% in 2015.However, despite China's rapid increase in its overall rate of urbanization, clear regional differences can be observed. Furthermore, inadequate research has been devoted to in-depth exploration of the regional differences in China's urbanization from a national perspective, as well as the internal factors that drive these differences. Using prefecture-level administrative units in China as the main research subject, this study illustrates the regional differences in urbanization by categorizing the divisions into four types based on their urbanization ratio and speed(high level: low speed; high level: high speed; low level: high speed; and low level: low speed). Next, we selected seven economic and geographic indicators and applied an ordered logit model to explore the driving factors of the regional differences in urbanization. A multiple linear regression model was then adopted to analyze the different impacts of these driving factors on regions with different urbanization types. The results showed that the regional differences in urbanization were significantly correlated to per capita GDP, industry location quotients, urban-rural income ratio,and time distance to major centers. In addition, with each type of urbanization, these factors were found to have a different driving effect. Specifically, the driving effect of per capita GDP and industry location quotients presented a marginally decreasing trend, while main road density appeared to have a more significant impact on cities with lower urbanization rates.展开更多
This paper revisits the Space-Time Gradient(STG) method which was developed for efficient analysis of unsteady flows due to rotor–stator interaction and presents the method from an alternative time-clocking perspecti...This paper revisits the Space-Time Gradient(STG) method which was developed for efficient analysis of unsteady flows due to rotor–stator interaction and presents the method from an alternative time-clocking perspective. The STG method requires reordering of blade passages according to their relative clocking positions with respect to blades of an adjacent blade row. As the space-clocking is linked to an equivalent time-clocking, the passage reordering can be performed according to the alternative time-clocking. With the time-clocking perspective, unsteady flow solutions from different passages of the same blade row are mapped to flow solutions of the same passage at different time instants or phase angles. Accordingly, the time derivative of the unsteady flow equation is discretized in time directly, which is more natural than transforming the time derivative to a spatial one as with the original STG method. To improve the solution accuracy, a ninth order difference scheme has been investigated for discretizing the time derivative. To achieve a stable solution for the high order scheme, the implicit solution method of Lower-Upper Symmetric GaussSeidel/Gauss-Seidel(LU-SGS/GS) has been employed. The NASA Stage 35 and its blade-countreduced variant are used to demonstrate the validity of the time-clocking based passage reordering and the advantages of the high order difference scheme for the STG method. Results from an existing harmonic balance flow solver are also provided to contrast the two methods in terms of solution stability and computational cost.展开更多
Radial basis functions(RBFs)can be used to approximate derivatives and solve differential equations in several ways.Here,we compare one important scheme to ordinary finite differences by a mixture of numerical experim...Radial basis functions(RBFs)can be used to approximate derivatives and solve differential equations in several ways.Here,we compare one important scheme to ordinary finite differences by a mixture of numerical experiments and theoretical Fourier analysis,that is,by deriving and discussing analytical formulas for the error in differentiating exp(ikx)for arbitrary k.‘Truncated RBF differences”are derived from the same strategy as Fourier and Chebyshev pseudospectral methods:Differentiation of the Fourier,Chebyshev or RBF interpolant generates a differentiation matrix that maps the grid point values or samples of a function u(x)into the values of its derivative on the grid.For Fourier and Chebyshev interpolants,the action of the differentiation matrix can be computed indirectly but efficiently by the Fast Fourier Transform(FFT).For RBF functions,alas,the FFT is inapplicable and direct use of the dense differentiation matrix on a grid of N points is prohibitively expensive(O(N2))unless N is tiny.However,for Gaussian RBFs,which are exponentially localized,there is another option,which is to truncate the dense matrix to a banded matrix,yielding“truncated RBF differences”.The resulting formulas are identical in form to finite differences except for the difference weights.On a grid of spacing h with the RBF asφ(x)=exp(−α^(2)(x/h)^(2)),d f dx(0)≈∑^(∞)_(m)=1 wm{f(mh)−f(−mh)},where without approximation wm=(−1)m+12α^(2)/sinh(mα^(2)).We derive explicit formula for the differentiation of the linear function,f(X)≡X,and the errors therein.We show that Gaussian radial basis functions(GARBF),when truncated to give differentiation formulas of stencil width(2M+1),are significantly less accurate than(2M)-th order finite differences of the same stencil width.The error of the infinite series(M=∞)decreases exponentially asα→0.However,truncated GARBF series have a second error(truncation error)that grows exponentially asα→0.Even forα∼O(1)where the sum of these two errors is minimized,it is shown that the finite difference formulas are always superior.We explain,less rigorously,why these arguments extend to more general species of RBFs and to an irregular grid.There are,however,a variety of alternative differentiation strategies which will be analyzed in future work,so it is far too soon to dismiss RBFs as a tool for solving differential equations.展开更多
In this paper, a difference scheme with nonuniform meshes is proposed for the initial-boundary problem of the nonlinear parabolic system. It is proved that the difference scheme is second order convergent in both spac...In this paper, a difference scheme with nonuniform meshes is proposed for the initial-boundary problem of the nonlinear parabolic system. It is proved that the difference scheme is second order convergent in both space and time.展开更多
In this paper, we prove the existence of a positive solution and a negative solution for a class of second order difference equations with dependence on the first order difference. Our proofs are based on the Mountain...In this paper, we prove the existence of a positive solution and a negative solution for a class of second order difference equations with dependence on the first order difference. Our proofs are based on the Mountain Pass Lemma and iterative methods.展开更多
We perform a comparison in terms of accuracy and CPU time between second order BDF semi-Lagrangian and Lagrange-Galerkin schemes in combination with high order finite element method.The numerical results show that for...We perform a comparison in terms of accuracy and CPU time between second order BDF semi-Lagrangian and Lagrange-Galerkin schemes in combination with high order finite element method.The numerical results show that for polynomials of degree 2 semi-Lagrangian schemes are faster than Lagrange-Galerkin schemes for the same number of degrees of freedom,however,for the same level of accuracy both methods are about the same in terms of CPU time.For polynomials of degree larger than 2,Lagrange-Galerkin schemes behave better than semi-Lagrangian schemes in terms of both accuracy and CPU time;specially,for polynomials of degree 8 or larger.Also,we have performed tests on the parallelization of these schemes and the speedup obtained is quasi-optimal even with more than 100 processors.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 20373021) and Natural Science Foundation of Liaoning Province (Grant No 20052151).
文摘A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.
基金supported by the Science and Technology Planning Project(2014JQ1041)of Shaanxi Provincethe Scientic Research Program Funded by Shaanxi Provincial Education Department(14JK1300)+1 种基金the Research Fund for the Doctoral Program(BS1342)of Xi’an Polytechnic Universitysupported by Ministerio de Economíay Competitividad and EC fund FEDER,Project no.MTM2010-15314,Spain
文摘Control systems governed by linear time-invariant neutral equations with different fractional orders are considered. Sufficient and necessary conditions for the controllability of those systems are established. The existence of optimal controls for the systems is given. Finally, two examples are provided to show the application of our results.
文摘In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.
文摘Kizmaz [13] studied the difference sequence spaces ∞(A), c(A), and co(A). Several article dealt with the sets of sequences of m-th order difference of which are bounded, convergent, or convergent to zero. Altay and Basar [5] and Altay, Basar, and Mursaleen [7] introduced the Euler sequence spaces e0^r, ec^r, and e∞^r, respectively. The main purpose of this article is to introduce the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m))consisting of all sequences whose mth order differences are in the Euler spaces e0^r, ec^r, and e∞^r, respectively. Moreover, the authors give some topological properties and inclusion relations, and determine the α-, β-, and γ-duals of the spaces e0^r△^(m)), ec^r△^(m)), and e∞^r△^(m)), and the Schauder basis of the spaces e0^r△^(m)), ec^r△^(m)). The last section of the article is devoted to the characterization of some matrix mappings on the sequence space ec^r△^(m)).
基金Project supported by the National Basic Research Program of China(No.2012CB720202)the National Natural Science Foundation of China(No.51476005)the 111 Project of China(No.B07009)
文摘Computational aeroacoustics (CAA) is an interdiscipline of aeroacoustics and computational fluid dynamics (CFD) for the investigation of sound generation and propagation from various aeroacoustics problems. In this review, the foundation and research scope of CAA are introduced firstly. A review of the early advances and applications of CAA is then briefly surveyed, focusing on two key issues, namely, high order finite difference scheme and non-reflecting boundary condition. Furthermore, the advances of CAA during the past five years are highlighted. Finally, the future prospective of CAA is briefly discussed.
基金supported by the research project#144003 of the Serbian Ministry of Science, Technology and Development
文摘In the past, several authors studied spaces of m-th order difference sequences, among them, H.Polat and F.Basar ([17]) defined the Euler spaces of m-th order difference sequences e r 0 (△ ( m ) ), e r c (△ ( m ) ) and e r ∞ (△ ( m ) ) and characterized some classes of matrix transformations on them. In our paper, we add a new supplementary aspect to their research by characterizing classes of compact operators on those spaces. For that purpose, the spaces are treated as the matrix domains of a triangle in the classical sequence spaces c 0 , c and ∞ . The main tool for our characterizations is the Hausdorff measure of noncompactness.
基金supported by the National Natural Science Foundation of China(11171119)
文摘In this paper, we investigate the value distribution of the difference counterpart △f(z)- af(z)^n of f′(z)- af(z)^n and obtain an almost direct difference analogue of result of Hayman.
基金This research was supported by the National Natural Science Foundation of China
文摘In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.
文摘In this paper we shall extend the paper [1] to a separate Taylor's Theorem with respect to a lot of centers, namely Newton's Theorem Of a lot of centers. From it we obtain the analogous results in the paper [2]. namely an interpolation formula of the difference of higher order. Finally we give their applications.
基金This work has been partially supported by the "Generalitat Valenciana" grant GV1118/93the Spanish D. G. I. C. Y.T. grant PB93-0381
文摘In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.
文摘In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.
文摘In this paper we study the Oscillatory behaviour of the second order delay differenceequation.(1)△(r<sub>n</sub>△A<sub>n</sub>)+P<sub>n</sub>A<sub>n-k</sub>=0,n=n<sub>0</sub>,n<sub>0</sub>+1……where{P<sub>n</sub>}(?)is a nonnegative Sequenceof real number,(?)is a positive sequence of real number with sum from n=n<sub>0</sub> to +∞(1/r<sub>n</sub>)=+∞,K is a positive integer and △A<sub>n</sub>=A<sub>n+1</sub>-A<sub>n</sub> we prove that each one of following conditions.imples that al solutions of Eq(1)oscillate,where R<sub>n</sub>=sum from i=n<sub>0</sub> to n(1/r<sub>i</sub>
基金Supported by the National Natural Science Foundation of China (19571023) the Natural Science Foundation of Hebei province (100139)
文摘In this paper, we give necessary and sufficient conditions for oscillation of bounded solutions of nonlinear second order difference equation △(pn△yn)+ qnf(yn-rn) = 0. Obtained results improve theorems in the literature [3,6,7].
文摘Suitable stabilization conditions obtained for continuous chaotic systems are generalized to discrete-time chaotic systems. The proposed approach, leading to these conditions for complete synchronization is based on the use of state feedback and aggregation techniques for stability studies associated with the arrow form matrix for system description. The results are successfully applied for two identical discrete-time hyper chaotic Henon maps with different orders and also for non-identical discrete-time chaotic systems with same order namely the Lozi and the Ushio maps.
基金supported by the National Science and Technology Support Program(Grant No.2014BAL04B01)the National Natural Science Foundation of China(Grant No.4159084)the National Social Science Fund of China(Grant No.14BGL149)
文摘After more than 30 years of rapid urbanization, the overall urbanization rate of China reached 56.1% in 2015.However, despite China's rapid increase in its overall rate of urbanization, clear regional differences can be observed. Furthermore, inadequate research has been devoted to in-depth exploration of the regional differences in China's urbanization from a national perspective, as well as the internal factors that drive these differences. Using prefecture-level administrative units in China as the main research subject, this study illustrates the regional differences in urbanization by categorizing the divisions into four types based on their urbanization ratio and speed(high level: low speed; high level: high speed; low level: high speed; and low level: low speed). Next, we selected seven economic and geographic indicators and applied an ordered logit model to explore the driving factors of the regional differences in urbanization. A multiple linear regression model was then adopted to analyze the different impacts of these driving factors on regions with different urbanization types. The results showed that the regional differences in urbanization were significantly correlated to per capita GDP, industry location quotients, urban-rural income ratio,and time distance to major centers. In addition, with each type of urbanization, these factors were found to have a different driving effect. Specifically, the driving effect of per capita GDP and industry location quotients presented a marginally decreasing trend, while main road density appeared to have a more significant impact on cities with lower urbanization rates.
基金co-supported by the National Natural Science Foundation of China(No.51976172)the National Science and Technology Major Project of China(No.2017-Ⅱ-0009-0023)。
文摘This paper revisits the Space-Time Gradient(STG) method which was developed for efficient analysis of unsteady flows due to rotor–stator interaction and presents the method from an alternative time-clocking perspective. The STG method requires reordering of blade passages according to their relative clocking positions with respect to blades of an adjacent blade row. As the space-clocking is linked to an equivalent time-clocking, the passage reordering can be performed according to the alternative time-clocking. With the time-clocking perspective, unsteady flow solutions from different passages of the same blade row are mapped to flow solutions of the same passage at different time instants or phase angles. Accordingly, the time derivative of the unsteady flow equation is discretized in time directly, which is more natural than transforming the time derivative to a spatial one as with the original STG method. To improve the solution accuracy, a ninth order difference scheme has been investigated for discretizing the time derivative. To achieve a stable solution for the high order scheme, the implicit solution method of Lower-Upper Symmetric GaussSeidel/Gauss-Seidel(LU-SGS/GS) has been employed. The NASA Stage 35 and its blade-countreduced variant are used to demonstrate the validity of the time-clocking based passage reordering and the advantages of the high order difference scheme for the STG method. Results from an existing harmonic balance flow solver are also provided to contrast the two methods in terms of solution stability and computational cost.
文摘Radial basis functions(RBFs)can be used to approximate derivatives and solve differential equations in several ways.Here,we compare one important scheme to ordinary finite differences by a mixture of numerical experiments and theoretical Fourier analysis,that is,by deriving and discussing analytical formulas for the error in differentiating exp(ikx)for arbitrary k.‘Truncated RBF differences”are derived from the same strategy as Fourier and Chebyshev pseudospectral methods:Differentiation of the Fourier,Chebyshev or RBF interpolant generates a differentiation matrix that maps the grid point values or samples of a function u(x)into the values of its derivative on the grid.For Fourier and Chebyshev interpolants,the action of the differentiation matrix can be computed indirectly but efficiently by the Fast Fourier Transform(FFT).For RBF functions,alas,the FFT is inapplicable and direct use of the dense differentiation matrix on a grid of N points is prohibitively expensive(O(N2))unless N is tiny.However,for Gaussian RBFs,which are exponentially localized,there is another option,which is to truncate the dense matrix to a banded matrix,yielding“truncated RBF differences”.The resulting formulas are identical in form to finite differences except for the difference weights.On a grid of spacing h with the RBF asφ(x)=exp(−α^(2)(x/h)^(2)),d f dx(0)≈∑^(∞)_(m)=1 wm{f(mh)−f(−mh)},where without approximation wm=(−1)m+12α^(2)/sinh(mα^(2)).We derive explicit formula for the differentiation of the linear function,f(X)≡X,and the errors therein.We show that Gaussian radial basis functions(GARBF),when truncated to give differentiation formulas of stencil width(2M+1),are significantly less accurate than(2M)-th order finite differences of the same stencil width.The error of the infinite series(M=∞)decreases exponentially asα→0.However,truncated GARBF series have a second error(truncation error)that grows exponentially asα→0.Even forα∼O(1)where the sum of these two errors is minimized,it is shown that the finite difference formulas are always superior.We explain,less rigorously,why these arguments extend to more general species of RBFs and to an irregular grid.There are,however,a variety of alternative differentiation strategies which will be analyzed in future work,so it is far too soon to dismiss RBFs as a tool for solving differential equations.
基金Supported by the National Natural Science Foundation of China(No.10671060,No.10871061)the Youth Foundation of Hunan Education Bureau(No.06B037)the Construct Program of the Key Discipline in Hunan Province
文摘In this paper, a difference scheme with nonuniform meshes is proposed for the initial-boundary problem of the nonlinear parabolic system. It is proved that the difference scheme is second order convergent in both space and time.
基金Foundation item: the National Natural Science Foundation of China (No. 60574075) Innovation Program of Shanghai Municipal Education Commissiion (No. 08YZ93) and Shanghai Leading Academic Discipline Project (No. S30501).
文摘In this paper, we prove the existence of a positive solution and a negative solution for a class of second order difference equations with dependence on the first order difference. Our proofs are based on the Mountain Pass Lemma and iterative methods.
基金funded by grant CGL2007-66440-C04-01 from Ministerio de Educacion y Ciencia de Espana.
文摘We perform a comparison in terms of accuracy and CPU time between second order BDF semi-Lagrangian and Lagrange-Galerkin schemes in combination with high order finite element method.The numerical results show that for polynomials of degree 2 semi-Lagrangian schemes are faster than Lagrange-Galerkin schemes for the same number of degrees of freedom,however,for the same level of accuracy both methods are about the same in terms of CPU time.For polynomials of degree larger than 2,Lagrange-Galerkin schemes behave better than semi-Lagrangian schemes in terms of both accuracy and CPU time;specially,for polynomials of degree 8 or larger.Also,we have performed tests on the parallelization of these schemes and the speedup obtained is quasi-optimal even with more than 100 processors.