期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
TEM Characterization of Helium Bubbles in T91 and MNHS Steels Implanted with 200 keV He Ions at Different Temperatures
1
作者 王霁 高星 +14 位作者 王志光 魏孔芳 姚存峰 崔明焕 孙建荣 李炳生 庞立龙 朱亚滨 骆鹏 常海龙 张宏鹏 朱卉平 王栋 杜洋洋 谢二庆 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期102-105,共4页
Modified novel high silicon steel (MNHS, a newly developed reduced-activation martensitic alloy) and commercial alloy Tgl are implanted with 200 keV He2+ ions to a dose of 5 × 1020 ions/m2 at 300, 450 and 560~... Modified novel high silicon steel (MNHS, a newly developed reduced-activation martensitic alloy) and commercial alloy Tgl are implanted with 200 keV He2+ ions to a dose of 5 × 1020 ions/m2 at 300, 450 and 560~C. Transmission electron microscopy (TEM) is used to characterize the size and morphology of He bubbles. With the increase of the implantation temperature, TEM observations indicate that bubbles increase in size and the proportion of 'brick shaped' cuboid bubbles increases while the proportion of polyhedral bubbles decreases in both the steel samples. For the samples implanted at the same temperature, the average size of He bubbles in MNHS is smaller than that in T91. This might be due to the abundance of boundaries and precipitates in MNHS, which provide additional sites for the trapping of He atoms, thus reduce the susceptibility of MNHS to He embrittlement. 展开更多
关键词 TEM Characterization of Helium Bubbles in T91 and MNHS steels Implanted with 200 keV He Ions at different Temperatures
下载PDF
Corrosion Measurements of Reinforcing Steel by Different Electrochemical Techniques 被引量:1
2
作者 S.M.Morsy (Metallurgy Dept. Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt) I.Z.Selim (Physical Chemistry Dept., National Research Center, Dokki, Cairo, Egypt)S. H. Tantawi (Building Research Institute, Dokki, Cairo, Egypt) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第6期447-451,共5页
Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current met... Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current method and potentiostatic polarization technique. The results of corrosion behaviour of the steel in both 5%NaCl and 5%MgSO4 show that each electrochemical technique provides some information about the condition of the steel bar or the corrosivity of the environment being evaluated, yet none provides a complete data regarding the corrosion resistance of reinforcing steel in aggressive media 展开更多
关键词 Corrosion Measurements of Reinforcing Steel by different Electrochemical Techniques
下载PDF
Effects of Cooling Paths on Through-Thickness Microstructure and Mechanical Properties of Heavy Gauge X80 Pipeline Steel 被引量:1
3
作者 Xu-Dong Li Cheng-Ning Li +1 位作者 Guo Yuan Guo-Dong Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第5期483-492,共10页
The effects of various cooling paths on uniformity of through-thickness microstructure and mechanical properties of X80 pipeline steel of 22.0 mm in thickness were studied. The finite difference method was employed to... The effects of various cooling paths on uniformity of through-thickness microstructure and mechanical properties of X80 pipeline steel of 22.0 mm in thickness were studied. The finite difference method was employed to calculate the temperature field during cooling. It was confirmed by the experimental result and temperature field calculation that the optimizing process was achieved by the ultra-fast cooling with medium cooling capacity(cooling rate of *23 K/s)followed by ultimate cooling capacity(cooling rate of *50 K/s). After optimization, the experimental steel displayed much uniform microstructure and the deviation of through-thickness hardness was controlled within 20 HV. In addition,the yield strength, tensile strength and elongation of the experimental steel were 621, 728 MPa and 21.5%, respectively,meeting the requirements of the API standard for X80 pipeline steels. 展开更多
关键词 X80 pipeline steel Ultra-fast cooling Cooling path Finite difference method Microstructure Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部