期刊文献+
共找到396篇文章
< 1 2 20 >
每页显示 20 50 100
Global Uniform Asymptotic Stability of Competitive Neural Networks with Different-Time Scales and Delay 被引量:1
1
作者 李红 吕恕 钟守铭 《Journal of Electronic Science and Technology of China》 2005年第2期126-129,共4页
The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the conditio... The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the condition for global uniformly asymptotically stable are given. A strict Lyapunov function for the flow of a competitive neural system with different time scales and delay is presented. Based on the function, the global uniform asymptotic stability of the equilibrium point can be proved. 展开更多
关键词 flow invariance DELAY different time-scales neural network asymptotic stability
下载PDF
New results on global exponential stability of competitive neural networks with different time scales and time-varying delays 被引量:1
2
作者 崔宝同 陈君 楼旭阳 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1670-1677,共8页
This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, som... This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria. 展开更多
关键词 competitive neural network different time scale global exponential stability DELAY
下载PDF
DIFFERENCE FEATURE NEURAL NETWORK IN RECOGNITION OF HUMAN FACES
3
作者 Chen Gang Qi Feihu (Dept. of Computer Sci. & Eng., Shanghai Jiaotong University, Shanghai 200030) 《Journal of Electronics(China)》 2001年第2期167-173,共7页
This article discusses vision recognition process and finds out that human recognizes objects not by their isolated features, but by their main difference features which people get by contrasting them. According to th... This article discusses vision recognition process and finds out that human recognizes objects not by their isolated features, but by their main difference features which people get by contrasting them. According to the resolving character of difference features for vision recognition, the difference feature neural network(DFNN) which is the improved auto-associative neural network is proposed.Using ORL database, the comparative experiment for face recognition with face images and the ones added Gaussian noise is performed, and the result shows that DFNN is better than the auto-associative neural network and it proves DFNN is more efficient. 展开更多
关键词 neural network Auto-associative neural network differENCE features FACE RECOGNITION
下载PDF
Adaptive Modeling and Forecasting of Time Series by Combining the Methods of Temporal Differences with Neural Networks
4
作者 杨璐 洪家荣 黄梯云 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第1期94-98,共5页
This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differen... This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differences methods with back-propagation algorithm for updating the parameters continuously on the basis of recent data. This method can make the neural network model fit the recent characteristic of the time series as close as possible, therefore improves the prediction accuracy. We built models and made predictions for the sunspot series. The prediction results of adaptive modeling method are better than that of non-adaptive modeling methods. 展开更多
关键词 ss: neural network TIME SERIES forecasting TEMPORAL differENCES METHODS
下载PDF
EXISTENCE AND ATTRACTIVITY OF k-ALMOST AUTOMORPHIC SEQUENCE SOLUTION OF A MODEL OF CELLULAR NEURAL NETWORKS WITH DELAY 被引量:3
5
作者 Syed ABBAS 夏永辉 《Acta Mathematica Scientia》 SCIE CSCD 2013年第1期290-302,共13页
In this paper we discuss the existence and global attractivity of k-almost automorphic sequence solution of a model of cellular neural networks. We consider the corresponding difference equation analogue of the model ... In this paper we discuss the existence and global attractivity of k-almost automorphic sequence solution of a model of cellular neural networks. We consider the corresponding difference equation analogue of the model system using suitable discretization method and obtain certain conditions for the existence of solution. Almost automorphic function is a good generalization of almost periodic function. This is the first paper considering such solutions of the neural networks. 展开更多
关键词 almost automorphic sequence difference equations neural networks
下载PDF
A NEW METHOD FOR SOLVING MSDE BASED ON WAVELET NEURAL NETWORKS 被引量:1
6
作者 Shui Penglang Bao Zheng Jiao Licheng (Key Lab. for Radar Signal Processing, Xidian Univ., Xi’an 710071) 《Journal of Electronics(China)》 1998年第3期215-220,共6页
In this paper, a new method to solve multiscale difference equation(MSDE) with the M-band wavelet neural networks is proposed. It is shown that the method has many advantages over the existing methods and enlarges the... In this paper, a new method to solve multiscale difference equation(MSDE) with the M-band wavelet neural networks is proposed. It is shown that the method has many advantages over the existing methods and enlarges the range of the solvable equations. 展开更多
关键词 WAVELET neural networks Multiscale differENCE equation M-BAND orthogonalwavelet BASIS
下载PDF
More relaxed condition for dynamics of discrete time delayed Hopfield neural networks
7
作者 张强 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第1期125-128,共4页
The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stabilit... The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found. The result obtained holds not only for constant delay but also for time-varying delays. 展开更多
关键词 discrete time delayed Hopfield neural networks difference inequality
下载PDF
Modeling and Simulation of Time Series Prediction Based on Dynamic Neural Network
8
作者 王雪松 程玉虎 彭光正 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期148-151,共4页
Molding and simulation of time series prediction based on dynamic neural network(NN) are studied. Prediction model for non-linear and time-varying system is proposed based on dynamic Jordan NN. Aiming at the intrinsic... Molding and simulation of time series prediction based on dynamic neural network(NN) are studied. Prediction model for non-linear and time-varying system is proposed based on dynamic Jordan NN. Aiming at the intrinsic defects of back-propagation (BP) algorithm that cannot update network weights incrementally, a hybrid algorithm combining the temporal difference (TD) method with BP algorithm to train Jordan NN is put forward. The proposed method is applied to predict the ash content of clean coal in jigging production real-time and multi-step. A practical example is also given and its application results indicate that the method has better performance than others and also offers a beneficial reference to the prediction of nonlinear time series. 展开更多
关键词 time series Jordan neural network(NN) back-propagation (BP) algorithm temporal difference (TD) method
下载PDF
Study on the Elman Neural Network Operation Control Strategy of the Central Air Conditioning Chilled Water System
9
作者 Jianwei Li Qingchang Ren +1 位作者 Hai Long Zengxi Feng 《World Journal of Engineering and Technology》 2019年第2期73-82,共10页
The stable operation of the central air conditioning water system always is a major difficulty for the control profession. Paper focus on the water system with multi variable, strong coupling, nonlinear, large time de... The stable operation of the central air conditioning water system always is a major difficulty for the control profession. Paper focus on the water system with multi variable, strong coupling, nonlinear, large time delay characteristics, presented use feed forward coupling compensation method, to eliminate the coupling effect between temperature and pressure. In this paper, the Elman neural network controller is designed for the first time, and the simulation results show that the response time of Elman neural network controller is shorter, the system is more stable and the overshoot is small. 展开更多
关键词 FEED Forward Coupling Compensation Central Air CONDITIONING Water System ALWAYS Temperature differENCE CONTROL Pressure differENCE CONTROL ELMAN neural network
下载PDF
Fuzzy Difference Equations in Diagnoses of Glaucoma from Retinal Images Using Deep Learning
10
作者 D.Dorathy Prema Kavitha L.Francis Raj +3 位作者 Sandeep Kautish Abdulaziz S.Almazyad Karam M.Sallam Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期801-816,共16页
The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye ... The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye detection using fuzzy difference equations in the domain where the retinal images converge.Retinal image detections are categorized as normal eye recognition,suspected glaucomatous eye recognition,and glaucomatous eye recognition.Fuzzy degrees associated with weighted values are calculated to determine the level of concentration between the fuzzy partition and the retinal images.The proposed model was used to diagnose glaucoma using retinal images and involved utilizing the Convolutional Neural Network(CNN)and deep learning to identify the fuzzy weighted regularization between images.This methodology was used to clarify the input images and make them adequate for the process of glaucoma detection.The objective of this study was to propose a novel approach to the early diagnosis of glaucoma using the Fuzzy Expert System(FES)and Fuzzy differential equation(FDE).The intensities of the different regions in the images and their respective peak levels were determined.Once the peak regions were identified,the recurrence relationships among those peaks were then measured.Image partitioning was done due to varying degrees of similar and dissimilar concentrations in the image.Similar and dissimilar concentration levels and spatial frequency generated a threshold image from the combined fuzzy matrix and FDE.This distinguished between a normal and abnormal eye condition,thus detecting patients with glaucomatous eyes. 展开更多
关键词 Convolutional neural network(CNN) glaucomatous eyes fuzzy difference equation intuitive fuzzy sets image segmentation retinal images
下载PDF
Connectivity differences between adult male and female patients with attention deficit hyperactivity disorder according to resting-state functional MRI 被引量:6
11
作者 Bo-yong Park Hyunjin Park 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期119-125,共7页
Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have ex... Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have explored the differences. The purpose of this study was to quantify differences between adult male and female patients with ADHD based on neuroimaging and connectivity analysis. Resting-state functional magnetic resonance imaging scans were obtained and preprocessed in 82 patients. Group-wise differences between male and female patients were quantified using degree centrality for different brain regions. The medial-, middle-, and inferior-frontal gyrus, superior parietal lobule, precuneus, supramarginal gyrus, superior- and middle-temporal gyrus, middle occipital gyrus, and cuneus were identified as regions with significant group-wise differences. The identified regions were correlated with clinical scores reflecting depression and anxiety and significant correlations were found. Adult ADHD patients exhibit different levels of depression and anxiety depending on sex, and our study provides insight into how changes in brain circuitry might differentially impact male and female ADHD patients. 展开更多
关键词 neural regeneration connectivity attention deficit hyperactivity disorder sex difference functional magnetic resonance imaging depression anxiety network analysis degree centrality diagnostic and statistical manual score
下载PDF
BEHAVIOR OF SOLUTIONS FOR A CLASS OF DIFFERENCE SYSTEMS
12
作者 BinHonghua HuangLihong 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2004年第4期390-398,共9页
In this paper, the discrete-time neural network model of two neurons with piecewise constant argument is considered. Some sufficient conditions under which every solution is either periodic or convergent are obtained.
关键词 CONVERGENCE PERIODICITY difference system neural network.
下载PDF
基于机器学习的“一带一路”投资国别风险预测研究 被引量:1
13
作者 向鹏成 高天 +1 位作者 段旭 李东 《工业技术经济》 CSSCI 北大核心 2024年第7期150-160,共11页
“一带一路”倡议提出十年间,中国对沿线国家的投资规模持续扩大。然而,企业在抓住机遇,进行“一带一路”沿线国家投资的同时,也需要重点关注“一带一路”投资国别风险。本文从政治、经济、社会和对华关系4个维度构建“一带一路”投资... “一带一路”倡议提出十年间,中国对沿线国家的投资规模持续扩大。然而,企业在抓住机遇,进行“一带一路”沿线国家投资的同时,也需要重点关注“一带一路”投资国别风险。本文从政治、经济、社会和对华关系4个维度构建“一带一路”投资国别风险预测指标体系;运用灰色关联分析计算样本国家的综合风险评价值;基于2012~2022年间“一带一路”沿线国家的数据,利用机器学习构建GA-BP神经网络、支持向量回归和随机森林3种预测模型;通过对比预测精度,确定最佳预测模型,利用2021年的指标数据,对2022年的投资国别风险进行预测。研究结果表明:(1)在“一带一路”投资国别风险的研究背景下,支持向量回归模型预测效果最优,证明机器学习模型能够有效应用于风险管理领域;(2)“一带一路”投资国别风险存在明显的地区差异,中东欧地区和东南亚地区投资国别风险普遍较低,而南亚地区投资国别风险普遍较高,但都存在特例。本文研究结果可为“走出去”企业在“一带一路”沿线国家的投资决策提供参考。 展开更多
关键词 “一带一路”投资 国别风险 机器学习 风险预测 GA-BP神经网络 支持向量回归 随机森林 地区差异
下载PDF
基于深度神经网络的7065铝合金厚板应力检测模型
14
作者 杨小平 武修瑞 +5 位作者 郑许 任月路 朱玉涛 何克准 卢祥丰 莫红楼 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第9期3787-3796,共10页
针对工业生产中传统超声应力检测法对铝合金厚板在不同拉伸率和不同温度条件下存在的测量误差的问题,以7065铝合金厚板为实验对象,提出一种在不同拉伸率和不同温度条件下的基于树突神经网络的应力预测模型与传统超声检测法融合的应力检... 针对工业生产中传统超声应力检测法对铝合金厚板在不同拉伸率和不同温度条件下存在的测量误差的问题,以7065铝合金厚板为实验对象,提出一种在不同拉伸率和不同温度条件下的基于树突神经网络的应力预测模型与传统超声检测法融合的应力检测模型,然后使用改进的GSA-GRNN对该应力检测模型进行温度补偿。以南南铝公司生产的7065铝合金厚板为研究对象,使用恒温槽为超声检测提供恒温环境,分别对不同拉伸率、不同温度下的7065铝合金厚板进行超声检测,将声时差、拉伸率作为输入参数,应力作为输出参数,创建一个基于树突神经网络的应力检测模型,然后将应力检测模型的输出作为输入,使用改进的GSA-GRNN建立温度补偿模型对应力检测模型进行温度补偿。研究结果表明:融合了传统超声声时差的检测模型均方根误差为0.84636,相关系数为0.99743,和其他神经网络模型对比,该模型拥有更好的精度;在对该模型进行温度补偿后,模型的应力均方根误差和相关系数分别可以达到0.78848和0.99844,模型的精度得到了进一步的提升。证明基于数据驱动的神经网络融合传统超声检测可以有效降低检测误差,同时省去传统检测方法人工计算应力的时间,提高了检测效率。研究结果可以为基于数据驱动的应力检测模型提供进一步的优化参考。 展开更多
关键词 应力检测 树突神经网络 粒子群算法 万有引力搜索算法 声时差
下载PDF
基于LPNN的无源ML-TDOA估计
15
作者 史红伟 左越 《沈阳工业大学学报》 CAS 北大核心 2024年第6期832-839,共8页
针对无源时差定位(TDOA)领域的非线性方程求解问题,提出了一种基于最大似然估计的改进型拉格朗日规划神经网络迭代求解算法。该算法利用最大似然估计构建代价函数,结合时空约束条件,建立TDOA方程的一般约束优化问题,并通过迭代求解算法... 针对无源时差定位(TDOA)领域的非线性方程求解问题,提出了一种基于最大似然估计的改进型拉格朗日规划神经网络迭代求解算法。该算法利用最大似然估计构建代价函数,结合时空约束条件,建立TDOA方程的一般约束优化问题,并通过迭代求解算法对网络的收敛性和渐近稳定性进行了证明。针对两种常见的阵列排布方式进行了仿真验证与性能分析。仿真实验结果表明,该算法能够提供精确的坐标估计,误差小于1.414×10^(-3)。与传统算法相比,该方法在各类噪声环境下表现出更优的性能,尤其在0 dB噪声环境下,其均方误差为0.7866。 展开更多
关键词 无源定位 时差定位 到达时间差 最大似然估计 拉格朗日规划神经网络 模拟神经网络 一般约束优化问题 代价函数
下载PDF
基于切削区域温度数据的刀具磨损预测
16
作者 郭宏 焦士轩 +3 位作者 董超杰 李锴诚 畅晨吕 李欣伦 《组合机床与自动化加工技术》 北大核心 2024年第9期163-167,172,共6页
刀具磨损预测是制造业中至关重要的问题,提前预测刀具的磨损,并及时进行更换,能够降低生产成本,提高生产效率。选择切削区域温度数据来预测刀具磨损,同时考虑到加工过程中切削屑的脱落会影响数据的采集,设计了降噪算法来去除切削屑的干... 刀具磨损预测是制造业中至关重要的问题,提前预测刀具的磨损,并及时进行更换,能够降低生产成本,提高生产效率。选择切削区域温度数据来预测刀具磨损,同时考虑到加工过程中切削屑的脱落会影响数据的采集,设计了降噪算法来去除切削屑的干扰。具体而言,首先,设计了基于帧差法的降噪算法;之后,构建了卷积长短时记忆网络预测刀具磨损;最后,通过实验对方法的有效性进行验证。实验结果表明降噪算法能够有效地去除切削屑产生的噪声,提出的网络模型相比传统的BP神经网络模型预测精度有所提高,不同工况下的预测结果均方根误差平均降低了0.0171。 展开更多
关键词 刀具磨损预测 数据降噪 帧差法 神经网络
下载PDF
非同频场景下无人机遥控器信号参数估计方法
17
作者 徐亚军 高田露 +2 位作者 唐文波 张强 鲁合德 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第7期298-304,共7页
为了有效地管控和反制无人机,准确地估计无人机遥控器信号的参数,提出了一种非同频场景下无人机遥控器信号参数估计方法。该方法利用谱图变换法将信号转换为时频图,并对每个时隙的频谱进行插值以提高频域分辨率;借助全连接神经网络估计... 为了有效地管控和反制无人机,准确地估计无人机遥控器信号的参数,提出了一种非同频场景下无人机遥控器信号参数估计方法。该方法利用谱图变换法将信号转换为时频图,并对每个时隙的频谱进行插值以提高频域分辨率;借助全连接神经网络估计出每个时隙中的跳频信源个数;将门限自适应去噪算法和K-means算法相结合抑制噪声分量,估计出起跳时刻、跳频周期、中心频率以及总带宽等参数。实验表明,所提方法在上述参数估计性能方面相比2种传统方法具有明显优势。 展开更多
关键词 无人机 跳频信号 参数估计 全连接神经网络 非同频
下载PDF
中国流通业高质量发展水平的空间差异与分布动态演进
18
作者 孙先民 张国微 《物流研究》 2024年第5期1-14,共14页
以创新、协调、绿色、开放、共享、发展保障六个维度为基础,构建中国流通业高质量发展水平评价指标体系,使用TOPSIS熵权—BP神经网络结合法测度2008—2022年中国30个省份(不含西藏和港澳台地区)的流通业高质量发展水平并进行修正,并在... 以创新、协调、绿色、开放、共享、发展保障六个维度为基础,构建中国流通业高质量发展水平评价指标体系,使用TOPSIS熵权—BP神经网络结合法测度2008—2022年中国30个省份(不含西藏和港澳台地区)的流通业高质量发展水平并进行修正,并在此基础上通过核密度、Dagum基尼系数、莫兰指数、空间马尔科夫链对中国流通业高质量发展水平的空间分布特征及动态趋势进行分析。研究发现:①测度期内中国流通业高质量发展水平始终保持上升趋势,但存在空间差异,表现为东部>全国>中部>西部;②中国流通业高质量发展水平差异逐渐增大,区域间差异是中国流通业高质量发展水平差异较大的主要原因,差异程度由大到小依次为东西>东中>中西,区域内差异为东部>西部>中部;③时间演进方面,总体呈上升态势,但增速缓慢,无极化现象和收敛性特征;空间演进方面,省份间存在明显的空间集聚效应,且具有差异增加的趋势,中国流通业高质量发展水平受地理位置约束,邻近省份对本省份存在差异化影响。 展开更多
关键词 流通业高质量发展 区域差异 动态趋势 BP神经网络
下载PDF
结构参数对固体氧化物电解槽性能的影响
19
作者 朱李 杨雁 +4 位作者 王红涛 孙兆松 张伟 曹军 张莉 《化学工程》 CAS CSCD 北大核心 2024年第10期77-82,共6页
SOEC(固体氧化物电解槽)的流道结构及电极厚度等结构参数对其性能具有重要影响。基于SOEC三维计算流体力学模型建立预测电流密度与温差的ANN(人工神经网络)模型,研究结构参数对SOEC电化学性能和温度场的影响规律。结果表明:ANN代理模型... SOEC(固体氧化物电解槽)的流道结构及电极厚度等结构参数对其性能具有重要影响。基于SOEC三维计算流体力学模型建立预测电流密度与温差的ANN(人工神经网络)模型,研究结构参数对SOEC电化学性能和温度场的影响规律。结果表明:ANN代理模型具有较高的精度和低的计算成本;温度分布均匀性与电解性能负相关;减小节距、肋宽和电极厚度会引起欧姆损耗的降低,电解槽的电流密度提高。与阳极肋宽相比,阴极肋宽对电流密度的影响更为显著,导致两者对温差的影响规律有所不同。当阳极厚度<40μm,阳极厚度减小导致反应活性面积急剧减小,电流密度因此降低。在参数研究范围内,当节距为1.8 mm,电解质厚度为8μm,阳极肋宽为0.6 mm,阴极肋宽为1.2 mm,阴极厚度为600μm时,能够保持高电流密度(>3700 A/m^(2))的同时获得最佳的温度均匀度。研究结果为固体氧化物电解槽的结构优化设计提供一种便捷可行的方法,具有重要指导意义。 展开更多
关键词 固体氧化物电解槽 计算流体力学 人工神经网络 电流密度 温差
下载PDF
面向人眼宽视场视觉成像质量的评价方法 被引量:1
20
作者 王杨 隆海燕 贾曦然 《计算机工程与设计》 北大核心 2024年第4期1157-1165,共9页
为考虑边缘视觉的影响,实现对人眼宽视场条件下视觉成像质量的量化,提出一种基于孪生神经网络的多视域成像质量评价方法。构建个性化眼模型,根据波前像差值获得不同视场处的成像图;利用色彩差异分割成像图中的不同区域,将其作为子图像... 为考虑边缘视觉的影响,实现对人眼宽视场条件下视觉成像质量的量化,提出一种基于孪生神经网络的多视域成像质量评价方法。构建个性化眼模型,根据波前像差值获得不同视场处的成像图;利用色彩差异分割成像图中的不同区域,将其作为子图像以样本对的形式输入到孪生神经网络中,提取图像的多维特征;模拟人眼对色彩的差异化感知,对区域图像质量评价值进行加权,得到对整幅图像的质量评价。为验证算法的有效性,在TID2013、LIVE和CSIQ这3个图像数据库上进行实验,其结果表明,该方法对多视场处成像质量的量化评估有良好的性能。 展开更多
关键词 孪生神经网络 图像质量评价 个性化眼模型 色彩差异 边缘视觉 波前像差值 差异化视场成像
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部