The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the conditio...The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the condition for global uniformly asymptotically stable are given. A strict Lyapunov function for the flow of a competitive neural system with different time scales and delay is presented. Based on the function, the global uniform asymptotic stability of the equilibrium point can be proved.展开更多
This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, som...This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria.展开更多
This article discusses vision recognition process and finds out that human recognizes objects not by their isolated features, but by their main difference features which people get by contrasting them. According to th...This article discusses vision recognition process and finds out that human recognizes objects not by their isolated features, but by their main difference features which people get by contrasting them. According to the resolving character of difference features for vision recognition, the difference feature neural network(DFNN) which is the improved auto-associative neural network is proposed.Using ORL database, the comparative experiment for face recognition with face images and the ones added Gaussian noise is performed, and the result shows that DFNN is better than the auto-associative neural network and it proves DFNN is more efficient.展开更多
This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differen...This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differences methods with back-propagation algorithm for updating the parameters continuously on the basis of recent data. This method can make the neural network model fit the recent characteristic of the time series as close as possible, therefore improves the prediction accuracy. We built models and made predictions for the sunspot series. The prediction results of adaptive modeling method are better than that of non-adaptive modeling methods.展开更多
In this paper we discuss the existence and global attractivity of k-almost automorphic sequence solution of a model of cellular neural networks. We consider the corresponding difference equation analogue of the model ...In this paper we discuss the existence and global attractivity of k-almost automorphic sequence solution of a model of cellular neural networks. We consider the corresponding difference equation analogue of the model system using suitable discretization method and obtain certain conditions for the existence of solution. Almost automorphic function is a good generalization of almost periodic function. This is the first paper considering such solutions of the neural networks.展开更多
In this paper, a new method to solve multiscale difference equation(MSDE) with the M-band wavelet neural networks is proposed. It is shown that the method has many advantages over the existing methods and enlarges the...In this paper, a new method to solve multiscale difference equation(MSDE) with the M-band wavelet neural networks is proposed. It is shown that the method has many advantages over the existing methods and enlarges the range of the solvable equations.展开更多
The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stabilit...The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found. The result obtained holds not only for constant delay but also for time-varying delays.展开更多
Molding and simulation of time series prediction based on dynamic neural network(NN) are studied. Prediction model for non-linear and time-varying system is proposed based on dynamic Jordan NN. Aiming at the intrinsic...Molding and simulation of time series prediction based on dynamic neural network(NN) are studied. Prediction model for non-linear and time-varying system is proposed based on dynamic Jordan NN. Aiming at the intrinsic defects of back-propagation (BP) algorithm that cannot update network weights incrementally, a hybrid algorithm combining the temporal difference (TD) method with BP algorithm to train Jordan NN is put forward. The proposed method is applied to predict the ash content of clean coal in jigging production real-time and multi-step. A practical example is also given and its application results indicate that the method has better performance than others and also offers a beneficial reference to the prediction of nonlinear time series.展开更多
The stable operation of the central air conditioning water system always is a major difficulty for the control profession. Paper focus on the water system with multi variable, strong coupling, nonlinear, large time de...The stable operation of the central air conditioning water system always is a major difficulty for the control profession. Paper focus on the water system with multi variable, strong coupling, nonlinear, large time delay characteristics, presented use feed forward coupling compensation method, to eliminate the coupling effect between temperature and pressure. In this paper, the Elman neural network controller is designed for the first time, and the simulation results show that the response time of Elman neural network controller is shorter, the system is more stable and the overshoot is small.展开更多
The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye ...The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye detection using fuzzy difference equations in the domain where the retinal images converge.Retinal image detections are categorized as normal eye recognition,suspected glaucomatous eye recognition,and glaucomatous eye recognition.Fuzzy degrees associated with weighted values are calculated to determine the level of concentration between the fuzzy partition and the retinal images.The proposed model was used to diagnose glaucoma using retinal images and involved utilizing the Convolutional Neural Network(CNN)and deep learning to identify the fuzzy weighted regularization between images.This methodology was used to clarify the input images and make them adequate for the process of glaucoma detection.The objective of this study was to propose a novel approach to the early diagnosis of glaucoma using the Fuzzy Expert System(FES)and Fuzzy differential equation(FDE).The intensities of the different regions in the images and their respective peak levels were determined.Once the peak regions were identified,the recurrence relationships among those peaks were then measured.Image partitioning was done due to varying degrees of similar and dissimilar concentrations in the image.Similar and dissimilar concentration levels and spatial frequency generated a threshold image from the combined fuzzy matrix and FDE.This distinguished between a normal and abnormal eye condition,thus detecting patients with glaucomatous eyes.展开更多
Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have ex...Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have explored the differences. The purpose of this study was to quantify differences between adult male and female patients with ADHD based on neuroimaging and connectivity analysis. Resting-state functional magnetic resonance imaging scans were obtained and preprocessed in 82 patients. Group-wise differences between male and female patients were quantified using degree centrality for different brain regions. The medial-, middle-, and inferior-frontal gyrus, superior parietal lobule, precuneus, supramarginal gyrus, superior- and middle-temporal gyrus, middle occipital gyrus, and cuneus were identified as regions with significant group-wise differences. The identified regions were correlated with clinical scores reflecting depression and anxiety and significant correlations were found. Adult ADHD patients exhibit different levels of depression and anxiety depending on sex, and our study provides insight into how changes in brain circuitry might differentially impact male and female ADHD patients.展开更多
In this paper, the discrete-time neural network model of two neurons with piecewise constant argument is considered. Some sufficient conditions under which every solution is either periodic or convergent are obtained.
文摘The global uniform asymptotic stability of competitive neural networks with different time scales and delay is investigated. By the method of variation of parameters and the method of inequality analysis, the condition for global uniformly asymptotically stable are given. A strict Lyapunov function for the flow of a competitive neural system with different time scales and delay is presented. Based on the function, the global uniform asymptotic stability of the equilibrium point can be proved.
基金supported by National Natural Science Foundation of China (Grant No 60674026)the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)Program for Innovative Research Team of Jiangnan University of China
文摘This paper studies the global exponential stability of competitive neural networks with different time scales and time-varying delays. By using the method of the proper Lyapunov functions and inequality technique, some sufficient conditions are presented for global exponential stability of delay competitive neural networks with different time scales. These conditions obtained have important leading significance in the designs and applications of global exponential stability for competitive neural networks. Finally, an example with its simulation is provided to demonstrate the usefulness of the proposed criteria.
文摘This article discusses vision recognition process and finds out that human recognizes objects not by their isolated features, but by their main difference features which people get by contrasting them. According to the resolving character of difference features for vision recognition, the difference feature neural network(DFNN) which is the improved auto-associative neural network is proposed.Using ORL database, the comparative experiment for face recognition with face images and the ones added Gaussian noise is performed, and the result shows that DFNN is better than the auto-associative neural network and it proves DFNN is more efficient.
文摘This paper discusses the modeling method of time series with neural network. In order to improve the adaptability of direct multi-step prediction models, this paper proposes a method of combining the temporal differences methods with back-propagation algorithm for updating the parameters continuously on the basis of recent data. This method can make the neural network model fit the recent characteristic of the time series as close as possible, therefore improves the prediction accuracy. We built models and made predictions for the sunspot series. The prediction results of adaptive modeling method are better than that of non-adaptive modeling methods.
基金supported by the National Natural Science Foundation of China (10901140, 11171090)ZJNSFC (Y6100029, Y6100696, Y6110195)
文摘In this paper we discuss the existence and global attractivity of k-almost automorphic sequence solution of a model of cellular neural networks. We consider the corresponding difference equation analogue of the model system using suitable discretization method and obtain certain conditions for the existence of solution. Almost automorphic function is a good generalization of almost periodic function. This is the first paper considering such solutions of the neural networks.
文摘In this paper, a new method to solve multiscale difference equation(MSDE) with the M-band wavelet neural networks is proposed. It is shown that the method has many advantages over the existing methods and enlarges the range of the solvable equations.
基金Project supported by the Program for New Century Excellent Talents in University (Grant No NCET-06-0298)the Program for Liaoning Excellent Talents in University (Grant No RC-05-07)+1 种基金the Program for Study of Science of the Educational Department of Liaoning Province, China (Grant No 05L020)the Program for Dalian Science and Technology of China (Grant No2005A10GX106)
文摘The dynamics of discrete time delayed Hopfield neural networks is investigated. By using a difference inequality combining with the linear matrix inequality, a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found. The result obtained holds not only for constant delay but also for time-varying delays.
文摘Molding and simulation of time series prediction based on dynamic neural network(NN) are studied. Prediction model for non-linear and time-varying system is proposed based on dynamic Jordan NN. Aiming at the intrinsic defects of back-propagation (BP) algorithm that cannot update network weights incrementally, a hybrid algorithm combining the temporal difference (TD) method with BP algorithm to train Jordan NN is put forward. The proposed method is applied to predict the ash content of clean coal in jigging production real-time and multi-step. A practical example is also given and its application results indicate that the method has better performance than others and also offers a beneficial reference to the prediction of nonlinear time series.
文摘The stable operation of the central air conditioning water system always is a major difficulty for the control profession. Paper focus on the water system with multi variable, strong coupling, nonlinear, large time delay characteristics, presented use feed forward coupling compensation method, to eliminate the coupling effect between temperature and pressure. In this paper, the Elman neural network controller is designed for the first time, and the simulation results show that the response time of Elman neural network controller is shorter, the system is more stable and the overshoot is small.
基金funding the publication of this research through the Researchers Supporting Program (RSPD2023R809),King Saud University,Riyadh,Saudi Arabia.
文摘The intuitive fuzzy set has found important application in decision-making and machine learning.To enrich and utilize the intuitive fuzzy set,this study designed and developed a deep neural network-based glaucoma eye detection using fuzzy difference equations in the domain where the retinal images converge.Retinal image detections are categorized as normal eye recognition,suspected glaucomatous eye recognition,and glaucomatous eye recognition.Fuzzy degrees associated with weighted values are calculated to determine the level of concentration between the fuzzy partition and the retinal images.The proposed model was used to diagnose glaucoma using retinal images and involved utilizing the Convolutional Neural Network(CNN)and deep learning to identify the fuzzy weighted regularization between images.This methodology was used to clarify the input images and make them adequate for the process of glaucoma detection.The objective of this study was to propose a novel approach to the early diagnosis of glaucoma using the Fuzzy Expert System(FES)and Fuzzy differential equation(FDE).The intensities of the different regions in the images and their respective peak levels were determined.Once the peak regions were identified,the recurrence relationships among those peaks were then measured.Image partitioning was done due to varying degrees of similar and dissimilar concentrations in the image.Similar and dissimilar concentration levels and spatial frequency generated a threshold image from the combined fuzzy matrix and FDE.This distinguished between a normal and abnormal eye condition,thus detecting patients with glaucomatous eyes.
基金supported in part by the Institute for Basic Science(to HP)No.IBS-R015-D1
文摘Attention deficit hyperactivity disorder(ADHD) is a pervasive psychiatric disorder that affects both children and adults. Adult male and female patients with ADHD are differentially affected, but few studies have explored the differences. The purpose of this study was to quantify differences between adult male and female patients with ADHD based on neuroimaging and connectivity analysis. Resting-state functional magnetic resonance imaging scans were obtained and preprocessed in 82 patients. Group-wise differences between male and female patients were quantified using degree centrality for different brain regions. The medial-, middle-, and inferior-frontal gyrus, superior parietal lobule, precuneus, supramarginal gyrus, superior- and middle-temporal gyrus, middle occipital gyrus, and cuneus were identified as regions with significant group-wise differences. The identified regions were correlated with clinical scores reflecting depression and anxiety and significant correlations were found. Adult ADHD patients exhibit different levels of depression and anxiety depending on sex, and our study provides insight into how changes in brain circuitry might differentially impact male and female ADHD patients.
基金the National Natural Science Foundation of China ( 1 0 0 71 0 1 6) ,the Key Project ofChinese Ministry of Education ( No[2 0 0 2 ]78) ,the Doctor Program Foundation of the Ministry ofEducation of China( 2 0 0 1 0 5 32 0 0 2 ) ,the Foundation for Universi
文摘In this paper, the discrete-time neural network model of two neurons with piecewise constant argument is considered. Some sufficient conditions under which every solution is either periodic or convergent are obtained.