In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where ...In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.展开更多
We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations...We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.展开更多
Using Nevanlinna theory of the value distribution of meromorphic functions, the author investigates the problem of the growth of solutions of two types of algebraic differential equation and obtains some results.
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
In this paper, by means of the normal family theory, we estimate the growth order of meromorphic solutions of some algebraic differential equations and improve the related result of Barsegian et al. [6]. We also give ...In this paper, by means of the normal family theory, we estimate the growth order of meromorphic solutions of some algebraic differential equations and improve the related result of Barsegian et al. [6]. We also give some examples to show that our results occur in some special cases.展开更多
The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding disc...The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding discretization method is presented, and the results can be used to implementation of various numerical integration methods. A numerical example is presented finally.展开更多
In this article, we give a simple proof of Malmquist-Yosida type theorem of higher order algebraic differential equations, which is different from the methods as that of Gackstatter and Laine [2], and Steinmetz [12].
Using Nevanlinna theory and value distribution of meromorphic functions and the other techniques,we investigate the counting functions of meromorphic solutions of systems of higher-order algebraic differential equatio...Using Nevanlinna theory and value distribution of meromorphic functions and the other techniques,we investigate the counting functions of meromorphic solutions of systems of higher-order algebraic differential equations and obtain some results.展开更多
This article investigates the algebraic differential independence concerning the Euler Γ-function and the function F in a certain class F which contains Dirichlet L-functions,L-functions in the extended Selberg class...This article investigates the algebraic differential independence concerning the Euler Γ-function and the function F in a certain class F which contains Dirichlet L-functions,L-functions in the extended Selberg class, or some periodic functions. We prove that the EulerΓ-function and the function F cannot satisfy any nontrivial algebraic differential equations whose coefficients are meromorphic functions Ø with ρ(Ø) < 1.展开更多
In this paper, we give an estimate result of Gol'dberg's theorem concern- ing the growth of meromorphic solutions of Mgebraic differential equations by using Zalcman Lemma. It is an extending result of the correspon...In this paper, we give an estimate result of Gol'dberg's theorem concern- ing the growth of meromorphic solutions of Mgebraic differential equations by using Zalcman Lemma. It is an extending result of the corresponding theorem by Yuan et al. (Yuan W J, Xiao B, Zhang J J. The general theorem of Gol'dberg concerning the growth of meromorphic solutions of algebraic differential equations. Comput. Math. Appl., 2009, 58:1788 1791). Meanwhile, we also take some examples to show that our estimate is sharp.展开更多
In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarant...In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarantee of computations with a given precision. The equations of programmed constraints and those of constraint perturbations are defined. The stability of the programmed manifold for numerical solutions of the kinematical and dynamical equations is obtained by corresponding construction of the constraint perturbation equations. The dynamical equations of system with programmed constraints are set up in the form of Lagrange’s equations in generalized coordinates. Certain inverse problems of rigid body dynamics are examined.展开更多
This paper considers the class of autonomous algebraic ordinary differential equations(AODEs)of order one,and studies their Liouvillian general solutions.In particular,let F(y,w)=0 be a rational algebraic curve over C...This paper considers the class of autonomous algebraic ordinary differential equations(AODEs)of order one,and studies their Liouvillian general solutions.In particular,let F(y,w)=0 be a rational algebraic curve over C.The authors give necessary and sufficient conditions for the autonomous first-order AODE F(y,y′)=0 to have a Liouvillian solution over C.Moreover,the authors show that a Liouvillian solutionαof this equation is either an algebraic function over C(x)or an algebraic function over C(exp(ax)).As a byproduct,these results lead to an algorithm for determining a Liouvillian general solution of an autonomous AODE of order one of genus zero.Rational parametrizations of rational algebraic curves play an important role on this method.展开更多
In this paper,we study the algebraic differential and the difference independence between the Riemann zeta function and the Euler gamma function.It is proved that the Riemann zeta function and the Euler gamma function...In this paper,we study the algebraic differential and the difference independence between the Riemann zeta function and the Euler gamma function.It is proved that the Riemann zeta function and the Euler gamma function cannot satisfy a class of nontrivial algebraic differential equations and algebraic difference equations.展开更多
We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatia...We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatial methods on a single body sub-dividedintomultiple subdomains.This is in conjunctionwithimplementing thewell known Generalized Single Step Single Solve(GS4)family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework.In the current state of technology,the coupling of altogether different time integration algorithms has been limited to the same family of algorithms such as theNewmarkmethods and the coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the Lagrange multiplier.However,the robustness and versatility of the GS4 with its ability to accurately account for the numerical shifts in various time schemes it encompasses,overcomes such barriers and allows a wide variety of arbitrary implicit-implicit,implicit-explicit,and explicit-explicit pairing of the various time schemes while maintaining the second order accuracy in time for not only all primary variables such as displacement,velocity and acceleration but also the Lagrange multipliers used for coupling the subdomains.By selecting an appropriate spatialmethod and time scheme on the area with localized phenomena contrary to utilizing a single process on the entire body,the proposed work has the potential to better capture the physics of a given simulation.The method is validated by solving 2D problems for the linear second order systems with various combination of spatial methods and time schemes with great flexibility.The accuracy and efficacy of the present work have not yet been seen in the current field,and it has shown significant promise in its capabilities and effectiveness for general linear dynamics through numerical examples.展开更多
Using Nevanlinna theory of the value distribution of meromorphic functions, we investigate the form of a type of algebraic differential equation with admissible meromorphic solutions and obtain a Malmquist type theorem.
Using Nevanlinna theory of the value distribution of meromorphic functions,we discuss some properties of the transcendental meromorphic solutions of second-order algebraic differential equations,and generalize some re...Using Nevanlinna theory of the value distribution of meromorphic functions,we discuss some properties of the transcendental meromorphic solutions of second-order algebraic differential equations,and generalize some results of some authors.展开更多
This paper considers algebraic ordinary differential equations(AODEs)and study their polynomial and rational solutions.The authors first prove a sufficient condition for the existence of a bound on the degree of the p...This paper considers algebraic ordinary differential equations(AODEs)and study their polynomial and rational solutions.The authors first prove a sufficient condition for the existence of a bound on the degree of the possible polynomial solutions to an AODE.An AODE satisfying this condition is called noncritical.Then the authors prove that some common classes of low-order AODEs are noncritical.For rational solutions,the authors determine a class of AODEs,which are called maximally comparable,such that the possible poles of any rational solutions are recognizable from their coefficients.This generalizes the well-known fact that any pole of rational solutions to a linear ODE is contained in the set of zeros of its leading coefficient.Finally,the authors develop an algorithm to compute all rational solutions of certain maximally comparable AODEs,which is applicable to 78.54%of the AODEs in Kamke's collection of standard differential equations.展开更多
This paper discusses all cases of second order linear singular defferential difference equations with delay and different coefficients, and prensents the conditionsfor existence and uniqueness of solutions nearly in a...This paper discusses all cases of second order linear singular defferential difference equations with delay and different coefficients, and prensents the conditionsfor existence and uniqueness of solutions nearly in all cases.展开更多
文摘In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.
基金supported by the Natural Science Foundationof China (10471065)the Natural Science Foundation of Guangdong Province (N04010474)
文摘We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.
基金The project Supported by NNSF of China(19971052)
文摘Using Nevanlinna theory of the value distribution of meromorphic functions, the author investigates the problem of the growth of solutions of two types of algebraic differential equation and obtains some results.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
基金Supported by the Natural Science Foundation of Guangdong Province(04010474) Supported by the Foundation of the Education Department of Anhui Province for Outstanding Young Teachers in University(2011SQRL172)
文摘This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
基金supported by the NNSF of China(11101048)supported by the Tianyuan Youth Fund of the NNSF of China(11326083)+4 种基金the Shanghai University Young Teacher Training Program(ZZSDJ12020)the Innovation Program of Shanghai Municipal Education Commission(14YZ164)the Projects(13XKJC01)from the Leading Academic Discipline Project of Shanghai Dianji Universitysupported by the NNSF of China(11271090)the NSF of Guangdong Province(S2012010010121)
文摘In this paper, by means of the normal family theory, we estimate the growth order of meromorphic solutions of some algebraic differential equations and improve the related result of Barsegian et al. [6]. We also give some examples to show that our results occur in some special cases.
文摘The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding discretization method is presented, and the results can be used to implementation of various numerical integration methods. A numerical example is presented finally.
基金supported by the Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and PresidentsNatural Science Foundation of China(11671191,11426118)+1 种基金Natural Science Foundation of Jiangsu Province(BK20140767)Qing Lan Project of Jiangsu Province
文摘In this article, we give a simple proof of Malmquist-Yosida type theorem of higher order algebraic differential equations, which is different from the methods as that of Gackstatter and Laine [2], and Steinmetz [12].
基金Supported by the National Natural Science Foundation of China(10471065) Supported by the Natural Science Foundation of Guangdong Province(04010474)
文摘Using Nevanlinna theory and value distribution of meromorphic functions and the other techniques,we investigate the counting functions of meromorphic solutions of systems of higher-order algebraic differential equations and obtain some results.
基金by Basic and Advanced Research Project of CQCSTC(cstc2019jcyj-msxmX0107)Fundamental Research Funds of Chongqing University of Posts and Telecommunications(CQUPT:A2018-125).
文摘This article investigates the algebraic differential independence concerning the Euler Γ-function and the function F in a certain class F which contains Dirichlet L-functions,L-functions in the extended Selberg class, or some periodic functions. We prove that the EulerΓ-function and the function F cannot satisfy any nontrivial algebraic differential equations whose coefficients are meromorphic functions Ø with ρ(Ø) < 1.
基金The NSF(10471065)of Chinathe Foundation(2011SQRL172)of the Education Department of Anhui Province for Outstanding Young Teachers in Universitythe Foundation(2012xq26)of the Huaibei Normal University for Young Teachers
文摘In this paper, we give an estimate result of Gol'dberg's theorem concern- ing the growth of meromorphic solutions of Mgebraic differential equations by using Zalcman Lemma. It is an extending result of the corresponding theorem by Yuan et al. (Yuan W J, Xiao B, Zhang J J. The general theorem of Gol'dberg concerning the growth of meromorphic solutions of algebraic differential equations. Comput. Math. Appl., 2009, 58:1788 1791). Meanwhile, we also take some examples to show that our estimate is sharp.
基金Supported by Russian Fund of Fund amental Investigations(Pr.990101064)and Russian Minister of Educatin
文摘In this paper the method of design of kinematical and dynamical equations of mechanical systems, applied to numerical ealization, is proposed. The corresponding difference equations, which are obtained, give a guarantee of computations with a given precision. The equations of programmed constraints and those of constraint perturbations are defined. The stability of the programmed manifold for numerical solutions of the kinematical and dynamical equations is obtained by corresponding construction of the constraint perturbation equations. The dynamical equations of system with programmed constraints are set up in the form of Lagrange’s equations in generalized coordinates. Certain inverse problems of rigid body dynamics are examined.
基金supported by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant No.101.04-2017.312。
文摘This paper considers the class of autonomous algebraic ordinary differential equations(AODEs)of order one,and studies their Liouvillian general solutions.In particular,let F(y,w)=0 be a rational algebraic curve over C.The authors give necessary and sufficient conditions for the autonomous first-order AODE F(y,y′)=0 to have a Liouvillian solution over C.Moreover,the authors show that a Liouvillian solutionαof this equation is either an algebraic function over C(x)or an algebraic function over C(exp(ax)).As a byproduct,these results lead to an algorithm for determining a Liouvillian general solution of an autonomous AODE of order one of genus zero.Rational parametrizations of rational algebraic curves play an important role on this method.
基金supported by Basic and Advanced Research Project of CQ CSTC(cstc2019jcyj-msxmX0107)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202000621)Fundamental Research Funds of Chongqing University of Posts and Telecommunications(CQUPT:A2018-125)。
文摘In this paper,we study the algebraic differential and the difference independence between the Riemann zeta function and the Euler gamma function.It is proved that the Riemann zeta function and the Euler gamma function cannot satisfy a class of nontrivial algebraic differential equations and algebraic difference equations.
文摘We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatial methods on a single body sub-dividedintomultiple subdomains.This is in conjunctionwithimplementing thewell known Generalized Single Step Single Solve(GS4)family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework.In the current state of technology,the coupling of altogether different time integration algorithms has been limited to the same family of algorithms such as theNewmarkmethods and the coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the Lagrange multiplier.However,the robustness and versatility of the GS4 with its ability to accurately account for the numerical shifts in various time schemes it encompasses,overcomes such barriers and allows a wide variety of arbitrary implicit-implicit,implicit-explicit,and explicit-explicit pairing of the various time schemes while maintaining the second order accuracy in time for not only all primary variables such as displacement,velocity and acceleration but also the Lagrange multipliers used for coupling the subdomains.By selecting an appropriate spatialmethod and time scheme on the area with localized phenomena contrary to utilizing a single process on the entire body,the proposed work has the potential to better capture the physics of a given simulation.The method is validated by solving 2D problems for the linear second order systems with various combination of spatial methods and time schemes with great flexibility.The accuracy and efficacy of the present work have not yet been seen in the current field,and it has shown significant promise in its capabilities and effectiveness for general linear dynamics through numerical examples.
文摘Using Nevanlinna theory of the value distribution of meromorphic functions, we investigate the form of a type of algebraic differential equation with admissible meromorphic solutions and obtain a Malmquist type theorem.
基金Supported by the National Natural Science Foundation of China (Grant No.10471065)the Natural Science Foundation of Guangdong Province (Grant No.04010474)
文摘Using Nevanlinna theory of the value distribution of meromorphic functions,we discuss some properties of the transcendental meromorphic solutions of second-order algebraic differential equations,and generalize some results of some authors.
基金supported by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant No.101.04-2019.06supported by the Austrian Science Fund(FWF)under Grant No.P29467-N32+1 种基金the UTD startup Fund under Grant No.P-1-03246the Natural Science Foundations of USA under Grant No.CF-1815108 and CCF-1708884。
文摘This paper considers algebraic ordinary differential equations(AODEs)and study their polynomial and rational solutions.The authors first prove a sufficient condition for the existence of a bound on the degree of the possible polynomial solutions to an AODE.An AODE satisfying this condition is called noncritical.Then the authors prove that some common classes of low-order AODEs are noncritical.For rational solutions,the authors determine a class of AODEs,which are called maximally comparable,such that the possible poles of any rational solutions are recognizable from their coefficients.This generalizes the well-known fact that any pole of rational solutions to a linear ODE is contained in the set of zeros of its leading coefficient.Finally,the authors develop an algorithm to compute all rational solutions of certain maximally comparable AODEs,which is applicable to 78.54%of the AODEs in Kamke's collection of standard differential equations.
文摘This paper discusses all cases of second order linear singular defferential difference equations with delay and different coefficients, and prensents the conditionsfor existence and uniqueness of solutions nearly in all cases.