The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR...The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR) structure and give the condition to complete the Hamiltonian realization. Then, based on the DHR, we present a criterion for the stability analysis of NDAS and construct a stabilization controller for NDAS in absence of disturbances. Finally, for NDAS in presence of disturbances, the L2 gain is analyzed via generalized Hamilton-Jacobi inequality and an H∞ control strategy is constructed. The proposed stabilization and robust controller can effectively take advantage of the structural characteristics of NDAS and is simple in form.展开更多
This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
Using an energy-based Hamiltonian function method,this paper investigates the robust excitation control of multi-machine multi-load power systems described by a set of uncertain differential algebraic equations.First,...Using an energy-based Hamiltonian function method,this paper investigates the robust excitation control of multi-machine multi-load power systems described by a set of uncertain differential algebraic equations.First,we complete the dissipative Hamiltonian realization of the power system and adjust its operating point by the means of pre-feedback control.Then,based on the obtained Hamiltonian realization,we discuss the robust excitation control of the power system and put forward an H1 excitation control strategy.Simulation results demonstrate the effectiveness of the control scheme.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 69774011 and 60433050).
文摘The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR) structure and give the condition to complete the Hamiltonian realization. Then, based on the DHR, we present a criterion for the stability analysis of NDAS and construct a stabilization controller for NDAS in absence of disturbances. Finally, for NDAS in presence of disturbances, the L2 gain is analyzed via generalized Hamilton-Jacobi inequality and an H∞ control strategy is constructed. The proposed stabilization and robust controller can effectively take advantage of the structural characteristics of NDAS and is simple in form.
基金Supported by the Natural Science Foundation of Guangdong Province(04010474) Supported by the Foundation of the Education Department of Anhui Province for Outstanding Young Teachers in University(2011SQRL172)
文摘This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
基金supported by the National Natural Science Foundation of China(Grant No.60974005)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101120008)the Nature Science Foundation of Henan Province(No.092300410201).
文摘Using an energy-based Hamiltonian function method,this paper investigates the robust excitation control of multi-machine multi-load power systems described by a set of uncertain differential algebraic equations.First,we complete the dissipative Hamiltonian realization of the power system and adjust its operating point by the means of pre-feedback control.Then,based on the obtained Hamiltonian realization,we discuss the robust excitation control of the power system and put forward an H1 excitation control strategy.Simulation results demonstrate the effectiveness of the control scheme.