A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decou...A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.展开更多
Dynamic analysis of scissor hydraulic lift platform has been performed to invest/gate the key factors which determine size and shape of the platfolan. By using MATLAB, the position of hydraulic cylinder has been optim...Dynamic analysis of scissor hydraulic lift platform has been performed to invest/gate the key factors which determine size and shape of the platfolan. By using MATLAB, the position of hydraulic cylinder has been optimized to reduce jacking force of piston and the whole system. Thus structure deformation decreases which is beneficial to control accuracy. Additionally, a new proportion integration differentiation (PID) control mode based on BP neural network has been developed to improve the stability and accuracy for the pasitio^L control in this system. Compared with existing PID tuning meth~~ls and fuzzy self-adjusted PID controllers, the proposed back propagation (BP) based PID controller can achieve better performance for a wide range of complex processes and realize self-tuning of parameters. It was confirmed that the performance of the lift platform regarding the force variation and position accuracy was greatly enhanced by optimizing of the system both in structure and control. Considerable economic benefit can also be achieved thrangh the application of this intelligent PID system.展开更多
基金Foundation item: Project(2012M521538) supported by China Postdoctoral Science Foundation Project suppolted by Postdoctoral Science Foundation of Central South University
文摘A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.
文摘Dynamic analysis of scissor hydraulic lift platform has been performed to invest/gate the key factors which determine size and shape of the platfolan. By using MATLAB, the position of hydraulic cylinder has been optimized to reduce jacking force of piston and the whole system. Thus structure deformation decreases which is beneficial to control accuracy. Additionally, a new proportion integration differentiation (PID) control mode based on BP neural network has been developed to improve the stability and accuracy for the pasitio^L control in this system. Compared with existing PID tuning meth~~ls and fuzzy self-adjusted PID controllers, the proposed back propagation (BP) based PID controller can achieve better performance for a wide range of complex processes and realize self-tuning of parameters. It was confirmed that the performance of the lift platform regarding the force variation and position accuracy was greatly enhanced by optimizing of the system both in structure and control. Considerable economic benefit can also be achieved thrangh the application of this intelligent PID system.