The method of lines is applied to the boundary-value problem for third order partial differential equation. Explicit expression and order of convergence for the approximate solution are obtained.
The compactness criterion in l◇={x(·)∈l^∞(0,∞))|lim t→∞ x(t)=x(∞)} is given and as an application,we study the existence of positive solutions of second order boundary value problems of differenc...The compactness criterion in l◇={x(·)∈l^∞(0,∞))|lim t→∞ x(t)=x(∞)} is given and as an application,we study the existence of positive solutions of second order boundary value problems of difference equation on the half line by the fixedpoint theorem in cones.展开更多
Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and effic...Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.展开更多
This paper proposed the scheme of transmission lines distance protection based on differential equation algorithms (DEA) and Hilbert-Huang transform (HHT). The measured impedance based on EDA is affected by various fa...This paper proposed the scheme of transmission lines distance protection based on differential equation algorithms (DEA) and Hilbert-Huang transform (HHT). The measured impedance based on EDA is affected by various factors, such as the distributed capacitance, the transient response characteristics of current transformer and voltage transformer, etc. In order to overcome this problem, the proposed scheme applies HHT to improve the apparent impedance estimated by DEA. Empirical mode decomposition (EMD) is used to decompose the data set from DEA into the intrinsic mode functions (IMF) and the residue. This residue has monotonic trend and is used to evaluate the impedance of faulty line. Simulation results show that the proposed scheme improves significantly the accuracy of the estimated impedance.展开更多
Presents a study which investigated some Jacobi approximations which are used for numerical solutions of differential equations on the half line. Application of the approximations to problems on unbounded domains; Alg...Presents a study which investigated some Jacobi approximations which are used for numerical solutions of differential equations on the half line. Application of the approximations to problems on unbounded domains; Algorithm to prove the stability and convergence of the approximations.展开更多
A class of the boundary value problem for fractional order nonlinear differential equation with Riemann-Liouville fractional derivative on the half line was studied. By using the coincidence degree theory due to Mawhi...A class of the boundary value problem for fractional order nonlinear differential equation with Riemann-Liouville fractional derivative on the half line was studied. By using the coincidence degree theory due to Mawhin and constructing the suitable operators,the existence theorem of at least one solution has been established. An example is given to illustrate our result.展开更多
In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The ev...In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The evolving system of ordinary differential equations (ODEs) is integrated numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10–10.展开更多
In this paper, the one-dimensional time dependent Schr?dinger equation is discretized by the method of lines using a second order finite difference approximation to replace the second order spatial derivative. The evo...In this paper, the one-dimensional time dependent Schr?dinger equation is discretized by the method of lines using a second order finite difference approximation to replace the second order spatial derivative. The evolving system of stiff Ordinary Differential Equation (ODE) in time is solved numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10?4 in the interval of consideration. The performance of the method as compared to an existing scheme is considered favorable.展开更多
We establish new Kamenev-type oscillation criteria for the half-linear partial differential equation with damping div(A(x)|| u||^p-2 u)+〈b(x),|| u||^p-2 u〉+c(x)|u|^p-2u=0(E)under quite general ...We establish new Kamenev-type oscillation criteria for the half-linear partial differential equation with damping div(A(x)|| u||^p-2 u)+〈b(x),|| u||^p-2 u〉+c(x)|u|^p-2u=0(E)under quite general conditions. These results are extensions of the recent results developed by Sun [Y.C. Sun, New Kamenev-type oscillation criteria of second order nonlinear differential equations with damping, J. Math. Anal. Appl. 291 (2004) 341-351] for second order ordinary differential equations in a natural way, and improve some existing results in the literature. As applications, we illustrate our main results using two different types of half-linear partial differential equations.展开更多
In this paper,the oscillation for a class of second-order half-linear neutral damped differential equation with time-delay is studied.By means of Yang-inequality,the generalized Riccati transformation and a certain fu...In this paper,the oscillation for a class of second-order half-linear neutral damped differential equation with time-delay is studied.By means of Yang-inequality,the generalized Riccati transformation and a certain function,some new sufficient conditions for the oscillation are given for all solutions to the equation.展开更多
The model of electrically driven jet is governed by a series of quasi 1D dimensionless partial differential equations(PDEs).Following the method of lines,the Chebyshev collocation method is employed to discretize the ...The model of electrically driven jet is governed by a series of quasi 1D dimensionless partial differential equations(PDEs).Following the method of lines,the Chebyshev collocation method is employed to discretize the PDEs and obtain a system of differential-algebraic equations(DAEs).By differentiating constrains in DAEs twice,the system is transformed into a set of ordinary differential equations(ODEs) with invariants.Then the implicit differential equations solver 'ddaskr' is used to solve the ODEs and post-stabilization is executed at the end of each step.Results show the distributions of radius,linear charge density,stretching ratio and also the horizontal velocity at a time point.Meanwhile,the spiral and expanding projections to X-Y plane of the jet centerline suggest the occurring of bending instability.展开更多
It is impossible,mathematically, to use a time series which is regarded as a set of observational facts of a dynamicsystem to reconstruct the particular system.Physically, however, with a few assumptions put, a dynami...It is impossible,mathematically, to use a time series which is regarded as a set of observational facts of a dynamicsystem to reconstruct the particular system.Physically, however, with a few assumptions put, a dynamic system canbe rebuilt approximately by means of observational facts.This is the goal of the so called invariant quantity method(IQM),whose research and experiment are of potential significance to atmospheric sciences.展开更多
This paper reflects the execution of a reliable technique which we proposed as a new method called the double auxiliary equations method for constructing new traveling wave solutions of nonlinear fractional differenti...This paper reflects the execution of a reliable technique which we proposed as a new method called the double auxiliary equations method for constructing new traveling wave solutions of nonlinear fractional differential equation.The proposed scheme has been successfully applied on two very important evolution equations,the space-time fractional differential equation governing wave propagation in low-pass electrical transmission lines equation and the time fractional Burger’s equation.The obtained results show that the proposed method is more powerful,promising and convenient for solving nonlinear fractional differential equations(NFPDEs).To our knowledge,the solutions obtained by the proposed method have not been reported in former literature.展开更多
文摘The method of lines is applied to the boundary-value problem for third order partial differential equation. Explicit expression and order of convergence for the approximate solution are obtained.
基金The NSF(11626188,11671322)of ChinaGansu Provincial NSF(1606RJYA232)of China and NWNU-LKQN-15-16
文摘The compactness criterion in l◇={x(·)∈l^∞(0,∞))|lim t→∞ x(t)=x(∞)} is given and as an application,we study the existence of positive solutions of second order boundary value problems of difference equation on the half line by the fixedpoint theorem in cones.
基金Project supported by the National Natural Sciences Foundation of China(Nos.59525813 and 19872066)the Cardiff Advanced Chinese Engineering Centre of Cardiff University.
文摘Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.
文摘This paper proposed the scheme of transmission lines distance protection based on differential equation algorithms (DEA) and Hilbert-Huang transform (HHT). The measured impedance based on EDA is affected by various factors, such as the distributed capacitance, the transient response characteristics of current transformer and voltage transformer, etc. In order to overcome this problem, the proposed scheme applies HHT to improve the apparent impedance estimated by DEA. Empirical mode decomposition (EMD) is used to decompose the data set from DEA into the intrinsic mode functions (IMF) and the residue. This residue has monotonic trend and is used to evaluate the impedance of faulty line. Simulation results show that the proposed scheme improves significantly the accuracy of the estimated impedance.
文摘Presents a study which investigated some Jacobi approximations which are used for numerical solutions of differential equations on the half line. Application of the approximations to problems on unbounded domains; Algorithm to prove the stability and convergence of the approximations.
基金National Natural Science Foundation of China(No.11271248)
文摘A class of the boundary value problem for fractional order nonlinear differential equation with Riemann-Liouville fractional derivative on the half line was studied. By using the coincidence degree theory due to Mawhin and constructing the suitable operators,the existence theorem of at least one solution has been established. An example is given to illustrate our result.
文摘In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The evolving system of ordinary differential equations (ODEs) is integrated numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10–10.
文摘In this paper, the one-dimensional time dependent Schr?dinger equation is discretized by the method of lines using a second order finite difference approximation to replace the second order spatial derivative. The evolving system of stiff Ordinary Differential Equation (ODE) in time is solved numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10?4 in the interval of consideration. The performance of the method as compared to an existing scheme is considered favorable.
基金Supported by the National Natural Science Foundation of Guangdong Province under Grant (No.8451063101000730)
文摘We establish new Kamenev-type oscillation criteria for the half-linear partial differential equation with damping div(A(x)|| u||^p-2 u)+〈b(x),|| u||^p-2 u〉+c(x)|u|^p-2u=0(E)under quite general conditions. These results are extensions of the recent results developed by Sun [Y.C. Sun, New Kamenev-type oscillation criteria of second order nonlinear differential equations with damping, J. Math. Anal. Appl. 291 (2004) 341-351] for second order ordinary differential equations in a natural way, and improve some existing results in the literature. As applications, we illustrate our main results using two different types of half-linear partial differential equations.
基金Supported by Science Foundation of Educational Department of Guangdong Province(Z03052).
文摘A kind of second-order half-linear differential equations with impulses is studied in this paper. Our results improve and generalize some known ones.
基金partially supported by the construct program of the key disciplin in Hunan Province(No.070105)
文摘In this paper,the oscillation for a class of second-order half-linear neutral damped differential equation with time-delay is studied.By means of Yang-inequality,the generalized Riccati transformation and a certain function,some new sufficient conditions for the oscillation are given for all solutions to the equation.
基金supported by the National Natural Science Foundation of China(10772136)Shanghai Leading Academic Discipline Project(B302)The authors wish to thank Dr.Guyue Jiao for the literary suggestions on the manuscript
文摘The model of electrically driven jet is governed by a series of quasi 1D dimensionless partial differential equations(PDEs).Following the method of lines,the Chebyshev collocation method is employed to discretize the PDEs and obtain a system of differential-algebraic equations(DAEs).By differentiating constrains in DAEs twice,the system is transformed into a set of ordinary differential equations(ODEs) with invariants.Then the implicit differential equations solver 'ddaskr' is used to solve the ODEs and post-stabilization is executed at the end of each step.Results show the distributions of radius,linear charge density,stretching ratio and also the horizontal velocity at a time point.Meanwhile,the spiral and expanding projections to X-Y plane of the jet centerline suggest the occurring of bending instability.
文摘It is impossible,mathematically, to use a time series which is regarded as a set of observational facts of a dynamicsystem to reconstruct the particular system.Physically, however, with a few assumptions put, a dynamic system canbe rebuilt approximately by means of observational facts.This is the goal of the so called invariant quantity method(IQM),whose research and experiment are of potential significance to atmospheric sciences.
文摘This paper reflects the execution of a reliable technique which we proposed as a new method called the double auxiliary equations method for constructing new traveling wave solutions of nonlinear fractional differential equation.The proposed scheme has been successfully applied on two very important evolution equations,the space-time fractional differential equation governing wave propagation in low-pass electrical transmission lines equation and the time fractional Burger’s equation.The obtained results show that the proposed method is more powerful,promising and convenient for solving nonlinear fractional differential equations(NFPDEs).To our knowledge,the solutions obtained by the proposed method have not been reported in former literature.