期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Solving chemical dynamic optimization problems with ranking-based differential evolution algorithms 被引量:3
1
作者 Xu Chen Wenli Du Feng Qian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第11期1600-1608,共9页
Dynamic optimization problems(DOPs) described by differential equations are often encountered in chemical engineering. Deterministic techniques based on mathematic programming become invalid when the models are non-di... Dynamic optimization problems(DOPs) described by differential equations are often encountered in chemical engineering. Deterministic techniques based on mathematic programming become invalid when the models are non-differentiable or explicit mathematical descriptions do not exist. Recently, evolutionary algorithms are gaining popularity for DOPs as they can be used as robust alternatives when the deterministic techniques are invalid. In this article, a technology named ranking-based mutation operator(RMO) is presented to enhance the previous differential evolution(DE) algorithms to solve DOPs using control vector parameterization. In the RMO, better individuals have higher probabilities to produce offspring, which is helpful for the performance enhancement of DE algorithms. Three DE-RMO algorithms are designed by incorporating the RMO. The three DE-RMO algorithms and their three original DE algorithms are applied to solve four constrained DOPs from the literature. Our simulation results indicate that DE-RMO algorithms exhibit better performance than previous non-ranking DE algorithms and other four evolutionary algorithms. 展开更多
关键词 Dynamic optimization differential evolution Ranking-based mutation operator Control vector parameterization
下载PDF
Multi-objective optimization of p-xylene oxidation process using an improved self-adaptive differential evolution algorithm 被引量:1
2
作者 Lili Tao Bin Xu +1 位作者 Zhihua Hu Weimin Zhong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期983-991,共9页
The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemi... The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality. 展开更多
关键词 p-Xylene oxidation Operation condition optimization Multi-objective optimization Self-adaptive differential evolution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部