Golden eagle optimizer(GEO)is a recently introduced nature-inspired metaheuristic algorithm,which simulates the spiral hunting behavior of golden eagles in nature.Regrettably,the GEO suffers from the challenges of low...Golden eagle optimizer(GEO)is a recently introduced nature-inspired metaheuristic algorithm,which simulates the spiral hunting behavior of golden eagles in nature.Regrettably,the GEO suffers from the challenges of low diversity,slow iteration speed,and stagnation in local optimization when dealing with complicated optimization problems.To ameliorate these deficiencies,an improved hybrid GEO called IGEO,combined with Lévy flight,sine cosine algorithm and differential evolution(DE)strategy,is developed in this paper.The Lévy flight strategy is introduced into the initial stage to increase the diversity of the golden eagle population and make the initial population more abundant;meanwhile,the sine-cosine function can enhance the exploration ability of GEO and decrease the possibility of GEO falling into the local optima.Furthermore,the DE strategy is used in the exploration and exploitation stage to improve accuracy and convergence speed of GEO.Finally,the superiority of the presented IGEO are comprehensively verified by comparing GEO and several state-of-the-art algorithms using(1)the CEC 2017 and CEC 2019 benchmark functions and(2)5 real-world engineering problems respectively.The comparison results demonstrate that the proposed IGEO is a powerful and attractive alternative for solving engineering optimization problems.展开更多
Learning control has been recognized as a powerful approach in quantum information technology. In this paper, we extend the application of differential evolution (DE) to design optimal control for various quantum sy...Learning control has been recognized as a powerful approach in quantum information technology. In this paper, we extend the application of differential evolution (DE) to design optimal control for various quantum systems. Various DE methods are introduced and analyzed, and EMSDE featuring in equally mixed strategies is employed for quantum control. Two classes of quantum control problems, including control of four-level open quantum ensembles and quantum superconducting systems, are investigated to demonstrate the performance of EMSDE for learning control of quantum systems. Numerical results verify the effectiveness of the FMSDE method for various quantum systems and show the potential for complex quantum control problems.展开更多
The advanced optimization method named as adaptive range differential evolution (ARDE) is developed. The optimization performance of ARDE is demonstrated using a typical mathematical test and compared with the stand...The advanced optimization method named as adaptive range differential evolution (ARDE) is developed. The optimization performance of ARDE is demonstrated using a typical mathematical test and compared with the standard genetic algorithm and differential evolution. Combined with parallel ARDE, surface modeling method and Navier-Stokes solution, a new automatic aerodynamic optimization method is presented. A low aspect ratio transonic turbine stage is optimized for the maximization of the isentropic efficiency with forty-one design variables in total. The coarse-grained parallel strategy is applied to accelerate the design process using 15 CPUs. The isentropic efficiency of the optimum design is 1.6% higher than that of the reference design. The aerodynamic performance of the optimal design is much better than that of the reference design.展开更多
基金National Natural Science Foundation of China(Grant No.51875454).
文摘Golden eagle optimizer(GEO)is a recently introduced nature-inspired metaheuristic algorithm,which simulates the spiral hunting behavior of golden eagles in nature.Regrettably,the GEO suffers from the challenges of low diversity,slow iteration speed,and stagnation in local optimization when dealing with complicated optimization problems.To ameliorate these deficiencies,an improved hybrid GEO called IGEO,combined with Lévy flight,sine cosine algorithm and differential evolution(DE)strategy,is developed in this paper.The Lévy flight strategy is introduced into the initial stage to increase the diversity of the golden eagle population and make the initial population more abundant;meanwhile,the sine-cosine function can enhance the exploration ability of GEO and decrease the possibility of GEO falling into the local optima.Furthermore,the DE strategy is used in the exploration and exploitation stage to improve accuracy and convergence speed of GEO.Finally,the superiority of the presented IGEO are comprehensively verified by comparing GEO and several state-of-the-art algorithms using(1)the CEC 2017 and CEC 2019 benchmark functions and(2)5 real-world engineering problems respectively.The comparison results demonstrate that the proposed IGEO is a powerful and attractive alternative for solving engineering optimization problems.
基金This paper is dedicated to Professor lan R. Petersen on the occasion of his 60th birthday. This work was supported by the National Natural Science Foundation of China (Nos. 61374092, 61432008), the National Key Research and Development Program of China (No. 2016YFD0702100) and the Australian Research Council's Discovery Projects funding scheme under Project DP130101658.
文摘Learning control has been recognized as a powerful approach in quantum information technology. In this paper, we extend the application of differential evolution (DE) to design optimal control for various quantum systems. Various DE methods are introduced and analyzed, and EMSDE featuring in equally mixed strategies is employed for quantum control. Two classes of quantum control problems, including control of four-level open quantum ensembles and quantum superconducting systems, are investigated to demonstrate the performance of EMSDE for learning control of quantum systems. Numerical results verify the effectiveness of the FMSDE method for various quantum systems and show the potential for complex quantum control problems.
基金This project is supported by Advanced Propulsion Technologies Demonstration Program of Commission of Science Technology and Industry for National Defense of China(No.APTD-0602-04).
文摘The advanced optimization method named as adaptive range differential evolution (ARDE) is developed. The optimization performance of ARDE is demonstrated using a typical mathematical test and compared with the standard genetic algorithm and differential evolution. Combined with parallel ARDE, surface modeling method and Navier-Stokes solution, a new automatic aerodynamic optimization method is presented. A low aspect ratio transonic turbine stage is optimized for the maximization of the isentropic efficiency with forty-one design variables in total. The coarse-grained parallel strategy is applied to accelerate the design process using 15 CPUs. The isentropic efficiency of the optimum design is 1.6% higher than that of the reference design. The aerodynamic performance of the optimal design is much better than that of the reference design.