期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Automatic Voltage Control of Differential Power Grids Based on Transfer Learning and Deep Reinforcement Learning 被引量:2
1
作者 Tianjing Wang Yong Tang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第3期937-948,共12页
In terms of model-free voltage control methods,when the device or topology of the system changes,the model’s accuracy often decreases,so an adaptive model is needed to coordinate the changes of input.To overcome the ... In terms of model-free voltage control methods,when the device or topology of the system changes,the model’s accuracy often decreases,so an adaptive model is needed to coordinate the changes of input.To overcome the defects of a model-free control method,this paper proposes an automatic voltage control(AVC)method for differential power grids based on transfer learning and deep reinforcement learning.First,when constructing the Markov game of AVC,both the magnitude and number of voltage deviations are taken into account in the reward.Then,an AVC method based on constrained multiagent deep reinforcement learning(DRL)is developed.To further improve learning efficiency,domain knowledge is used to reduce action space.Next,distribution adaptation transfer learning is introduced for the AVC transfer circumstance of systems with the same structure but distinct topological relations/parameters,which can perform well without any further training even if the structure changes.Moreover,for the AVC transfer circumstance of various power grids,parameter-based transfer learning is created,which enhances the target system’s training speed and effect.Finally,the method’s efficacy is tested using two IEEE systems and two real-world power grids. 展开更多
关键词 Deep reinforcement learning differential power grids TRANSFER voltage control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部