This paper presents a single-ended input differential output low-noise amplifier intended for GPS applications. We propose a method to reduce the gain/amplitude and phase imbalance of a differential output exploiting ...This paper presents a single-ended input differential output low-noise amplifier intended for GPS applications. We propose a method to reduce the gain/amplitude and phase imbalance of a differential output exploiting the inductive coupling of a transformer or center-tapped differential inductor.A detailed analysis of the theory of imbalance reduction,as well as a discussion on the principle of choosing the dimensions of a transformer,are given.An LNA has been implemented using TSMC 0.18μm technology with ESD-protected.Measurement on board shows a voltage gain of 24.6 dB at 1.575 GHz and a noise figure of 3.2 dB.The gain imbalance is below 0.2 dB and phase imbalance is less than 2 degrees.The LNA consumes 5.2 mA from a 1.8 V supply.展开更多
An efficient and accurate spectral method is presented for scattering problems with rough surfaces.A probabilistic framework is adopted by modeling the surface roughness as random process.An improved boundary perturba...An efficient and accurate spectral method is presented for scattering problems with rough surfaces.A probabilistic framework is adopted by modeling the surface roughness as random process.An improved boundary perturbation technique is employed to transform the original Helmholtz equation in a random domain into a stochastic Helmholtz equation in a fixed domain.The generalized polynomial chaos(gPC)is then used to discretize the random space;and a Fourier-Legendre method to discretize the physical space.These result in a highly efficient and accurate spectral algorithm for acoustic scattering from rough surfaces.Numerical examples are presented to illustrate the accuracy and efficiency of the present algorithm.展开更多
基金Project supported by the Core Electronic Devices,High-End General Chips and Basic Software Products Major Projects.China(No. 2009ZX01031-002-008)
文摘This paper presents a single-ended input differential output low-noise amplifier intended for GPS applications. We propose a method to reduce the gain/amplitude and phase imbalance of a differential output exploiting the inductive coupling of a transformer or center-tapped differential inductor.A detailed analysis of the theory of imbalance reduction,as well as a discussion on the principle of choosing the dimensions of a transformer,are given.An LNA has been implemented using TSMC 0.18μm technology with ESD-protected.Measurement on board shows a voltage gain of 24.6 dB at 1.575 GHz and a noise figure of 3.2 dB.The gain imbalance is below 0.2 dB and phase imbalance is less than 2 degrees.The LNA consumes 5.2 mA from a 1.8 V supply.
基金supported in part by NSF grants DMS-0243191 and DMS-0311915.
文摘An efficient and accurate spectral method is presented for scattering problems with rough surfaces.A probabilistic framework is adopted by modeling the surface roughness as random process.An improved boundary perturbation technique is employed to transform the original Helmholtz equation in a random domain into a stochastic Helmholtz equation in a fixed domain.The generalized polynomial chaos(gPC)is then used to discretize the random space;and a Fourier-Legendre method to discretize the physical space.These result in a highly efficient and accurate spectral algorithm for acoustic scattering from rough surfaces.Numerical examples are presented to illustrate the accuracy and efficiency of the present algorithm.