In this paper we show that it is possible to integrate functions with concepts and fundamentals of Paraconsistent Logic (PL). The PL is a non-classical Logic that tolerates the contradiction without trivializing its r...In this paper we show that it is possible to integrate functions with concepts and fundamentals of Paraconsistent Logic (PL). The PL is a non-classical Logic that tolerates the contradiction without trivializing its results. In several works the PL in his annotated form, called Paraconsistent logic annotated with annotation of two values (PAL2v), has presented good results in analysis of information signals. Geometric interpretations based on PAL2v-Lattice associate were obtained forms of Differential Calculus to a Paraconsistent Derivative of first and second-order functions. Now, in this paper we extend the calculations for a form of Paraconsistent Integral Calculus that can be viewed through the analysis in the PAL2v-Lattice. Despite improvements that can develop calculations in complex functions, it is verified that the use of Paraconsistent Mathematics in differential and Integral Calculus opens a promising path in researches developed for solving linear and nonlinear systems. Therefore the Paraconsistent Integral Differential Calculus can be an important tool in systems by modeling and solving problems related to Physical Sciences.展开更多
By employing the Srivastava-Owa fractional operators, we consider a class of fractional differential equation in the unit disk. The existence of the univalent solution is founded by using the Schauder fixed point theo...By employing the Srivastava-Owa fractional operators, we consider a class of fractional differential equation in the unit disk. The existence of the univalent solution is founded by using the Schauder fixed point theorem while the uniqueness is obtained by using the Banach fixed point theorem. Moreover, the integral mean of these solutions is studied by applying the concept of the subordination.展开更多
This paper focuses on studying a new energy-work relationship numericM integration scheme of nonholonomic Hamiltonian systems. The signal-stage numerical, multi-stage and parallel composition numerical integration sch...This paper focuses on studying a new energy-work relationship numericM integration scheme of nonholonomic Hamiltonian systems. The signal-stage numerical, multi-stage and parallel composition numerical integration schemes are presented. The high-order energy-work relation scheme of the system is constructed by a parallel connection of n multi-stage schemes of order 2, its order of accuracy is 2n. The connection, which is discrete analogue of usual case, between the change of energy and work of nonholonomic constraint forces is obtained for nonholonomie Hamiltonian systems. This paper also gives that there is smaller error of the scheme when taking a large number of stages than a less one. Finally, an applied example is discussed to illustrate these results.展开更多
文摘In this paper we show that it is possible to integrate functions with concepts and fundamentals of Paraconsistent Logic (PL). The PL is a non-classical Logic that tolerates the contradiction without trivializing its results. In several works the PL in his annotated form, called Paraconsistent logic annotated with annotation of two values (PAL2v), has presented good results in analysis of information signals. Geometric interpretations based on PAL2v-Lattice associate were obtained forms of Differential Calculus to a Paraconsistent Derivative of first and second-order functions. Now, in this paper we extend the calculations for a form of Paraconsistent Integral Calculus that can be viewed through the analysis in the PAL2v-Lattice. Despite improvements that can develop calculations in complex functions, it is verified that the use of Paraconsistent Mathematics in differential and Integral Calculus opens a promising path in researches developed for solving linear and nonlinear systems. Therefore the Paraconsistent Integral Differential Calculus can be an important tool in systems by modeling and solving problems related to Physical Sciences.
文摘By employing the Srivastava-Owa fractional operators, we consider a class of fractional differential equation in the unit disk. The existence of the univalent solution is founded by using the Schauder fixed point theorem while the uniqueness is obtained by using the Banach fixed point theorem. Moreover, the integral mean of these solutions is studied by applying the concept of the subordination.
基金supported by National Natural Science Foundation of China under Grant No.10672143the Natural Science Foundation of Henan Province under Grant No.0511022200
文摘This paper focuses on studying a new energy-work relationship numericM integration scheme of nonholonomic Hamiltonian systems. The signal-stage numerical, multi-stage and parallel composition numerical integration schemes are presented. The high-order energy-work relation scheme of the system is constructed by a parallel connection of n multi-stage schemes of order 2, its order of accuracy is 2n. The connection, which is discrete analogue of usual case, between the change of energy and work of nonholonomic constraint forces is obtained for nonholonomie Hamiltonian systems. This paper also gives that there is smaller error of the scheme when taking a large number of stages than a less one. Finally, an applied example is discussed to illustrate these results.