There are the application scope limits for single differential-mode current injection test method, so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cab...There are the application scope limits for single differential-mode current injection test method, so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cable simultaneously, a double differential-mode current in- jection test method (DDMCI) is proposed. The method adopted the equivalence source wave theorem and Baum-Liu-Tesche(BLT) equation as its theory foundation. The equivalent corresponding relation between injection voltage and radiation electric field intensity is derived, and the phase relation between the two injection voltage sources is confirmed. The results indicate that the amplitude and phase of the equivalent injection voltage source is closely related to the S parameter of directional coupling device, the transmission line length, and the source vector in BLT equation, but has nothing to do with the reflection coefficient between the two equipment pieces. Therefore, by choosing the right amplitude and phase of the double injection voltage sources, the DDMCI test is equivalent to the radiation test for two interconnected equipment of a system.展开更多
To achieve the electric field strength and the induced currents in equivalence in susceptibility tests with the high-level field radiation above 400 MHz,a double differential-mode(DM) current injection method based on...To achieve the electric field strength and the induced currents in equivalence in susceptibility tests with the high-level field radiation above 400 MHz,a double differential-mode(DM) current injection method based on directional couplers is proposed.Two cascaded symmetrical directional couplers compose a coupling device to inject the DM currents.When the coupling device is used,two devices are necessary to achieve the equivalence between radiation and injection,i.e.the equivalence between the injected voltages and the field strength,which is linear,regardless of the characteristics of the equipment under test(EUT).The results are verified by experiments using typical coaxial cables and nonlinear devices,where the equivalence between the nonlinear EUT responses induced by radiation and injection at both ends is achieved by using two coupling devices.At a frequency up to 1.75 GHz,the maximal experimental error is only 3.39%.The experimental results confirm the accuracy of the proposed method even both the EUTs work in the nonlinear region.The proposed method is applicable for radiated susceptibility(RS) testing of interconnected systems in the microwave frequency band.展开更多
基金Project supported by Arm Pre-research Program (51333040101), National Defense 973 Program (6131380301 ), National Natural Science Foundation of China (61040003).
文摘There are the application scope limits for single differential-mode current injection test method, so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cable simultaneously, a double differential-mode current in- jection test method (DDMCI) is proposed. The method adopted the equivalence source wave theorem and Baum-Liu-Tesche(BLT) equation as its theory foundation. The equivalent corresponding relation between injection voltage and radiation electric field intensity is derived, and the phase relation between the two injection voltage sources is confirmed. The results indicate that the amplitude and phase of the equivalent injection voltage source is closely related to the S parameter of directional coupling device, the transmission line length, and the source vector in BLT equation, but has nothing to do with the reflection coefficient between the two equipment pieces. Therefore, by choosing the right amplitude and phase of the double injection voltage sources, the DDMCI test is equivalent to the radiation test for two interconnected equipment of a system.
基金supported by National Basic Research Program of China(973 Program)
文摘To achieve the electric field strength and the induced currents in equivalence in susceptibility tests with the high-level field radiation above 400 MHz,a double differential-mode(DM) current injection method based on directional couplers is proposed.Two cascaded symmetrical directional couplers compose a coupling device to inject the DM currents.When the coupling device is used,two devices are necessary to achieve the equivalence between radiation and injection,i.e.the equivalence between the injected voltages and the field strength,which is linear,regardless of the characteristics of the equipment under test(EUT).The results are verified by experiments using typical coaxial cables and nonlinear devices,where the equivalence between the nonlinear EUT responses induced by radiation and injection at both ends is achieved by using two coupling devices.At a frequency up to 1.75 GHz,the maximal experimental error is only 3.39%.The experimental results confirm the accuracy of the proposed method even both the EUTs work in the nonlinear region.The proposed method is applicable for radiated susceptibility(RS) testing of interconnected systems in the microwave frequency band.