Background:Differential scanning calorimetry as a method of investigating and monitoring the kinetics of herbal medicinal plants.Some instrumental and experimental aspects are discussed.Methods:A brief survey is made ...Background:Differential scanning calorimetry as a method of investigating and monitoring the kinetics of herbal medicinal plants.Some instrumental and experimental aspects are discussed.Methods:A brief survey is made of herbal medicinal plants and results of differential scanning calorimetry studies are reviewed and this discussion is presented the effects of the instrumental conditions like heating rate and the sample conditions like sample particle size,sample mass,sample purity,sample stability in the melting region and property of impurities.Conclusion:This study suggests that application of differential scanning calorimetry to study the interpretation on herbal medicinal drugs.展开更多
LT-3 aluminum alloy is a kind of two-side cladding aluminum special used in vacuum brazing. Differential Scanning Calorimeter (DSC) was used to measure the exothermic and endothermic reaction during the brazing proc...LT-3 aluminum alloy is a kind of two-side cladding aluminum special used in vacuum brazing. Differential Scanning Calorimeter (DSC) was used to measure the exothermic and endothermic reaction during the brazing process that the cortex metal and the base metal are melted and re-crystal. The analysis results inidicate that eutectic reaction is the main reaction in the melted cortex metal crystallization process. But the main reaction in the melted base metal crystallization process is the reaction that α-A1 segregated out. According to the experimental details, the critical work of nucleation is 3.82×10-17J, the critical radius of nucleation is 8.69×10-10 m, the volume of critical crystal nucleus is 2.75×10-27 m3 and the per unit cell in critical crystal nucleus is 43.展开更多
In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide c...In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.展开更多
文摘Background:Differential scanning calorimetry as a method of investigating and monitoring the kinetics of herbal medicinal plants.Some instrumental and experimental aspects are discussed.Methods:A brief survey is made of herbal medicinal plants and results of differential scanning calorimetry studies are reviewed and this discussion is presented the effects of the instrumental conditions like heating rate and the sample conditions like sample particle size,sample mass,sample purity,sample stability in the melting region and property of impurities.Conclusion:This study suggests that application of differential scanning calorimetry to study the interpretation on herbal medicinal drugs.
文摘LT-3 aluminum alloy is a kind of two-side cladding aluminum special used in vacuum brazing. Differential Scanning Calorimeter (DSC) was used to measure the exothermic and endothermic reaction during the brazing process that the cortex metal and the base metal are melted and re-crystal. The analysis results inidicate that eutectic reaction is the main reaction in the melted cortex metal crystallization process. But the main reaction in the melted base metal crystallization process is the reaction that α-A1 segregated out. According to the experimental details, the critical work of nucleation is 3.82×10-17J, the critical radius of nucleation is 8.69×10-10 m, the volume of critical crystal nucleus is 2.75×10-27 m3 and the per unit cell in critical crystal nucleus is 43.
基金Project (2006BAK04B03) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of ChinaProject (kjdb200902-7) supported by Doctoral Candidate Innovation Research Support Program of Science & Technology Review, China+1 种基金Project (1960-71131100023) supported by Postgraduate Dissertation Innovation Foundation of Central South University, ChinaProject (ZKJ2009008) supported by Precious Apparatus Opening Center Foundation of Central South University, China
文摘In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.