期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling 被引量:3
1
作者 H.T.Jeong W.J.Kim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第16期152-166,共15页
A very coarse-grained(335μm)Fe_(41)Mn_(25)Ni_(24)Co_(8)Cr_(2)high-entropy alloy with a single FCC phase was cold rolling to a 80%reduction in thickness using the differential speed rolling technique with various spee... A very coarse-grained(335μm)Fe_(41)Mn_(25)Ni_(24)Co_(8)Cr_(2)high-entropy alloy with a single FCC phase was cold rolling to a 80%reduction in thickness using the differential speed rolling technique with various speed ratios(SRs)ranging between 1 and 4.As the SR was increased,the volume fraction of the region of high-density micro-shear bands increased to accommodate the higher shear strain.At SR=4,the entire thickness of the sheet was covered with micro-shear bands,and ultrafine(sub)grains with a size of1.4μm were uniformly formed along the shear bands.A continuous dynamic recrystallization(CDRX)mechanism occurred during rolling,and a higher SR accelerated the CDRX process.During conventional rolling(at SR=1),a brass{110}<112>orientation texture with minor components of S{123}<634>and Cu{112}<111>orientations developed.At higher SRs,shear texture developed as the main type,while the development of rolling texture was suppressed.The microstructure at SR=4 obtained after annealing at973 K showed a fully recrystallized microstructure composed of a five times smaller grain size(4μm)with a higher intensity ofγfiber texture compared with that prepared by conventional rolling.The samples processed with high SRs exhibited better tensile properties compared with the conventionally rolled sample in terms of strength and ductility after annealing.The current results demonstrate that by using differential speed rolling with a high SR,one can achieve a significantly finer and more homogeneous microstructure,stronger shear texture,and superior tensile mechanical properties for an FCC high-entropy alloy compared to that obtained by conventional rolling.The strength of the as-rolled and annealed samples was quantitatively explained by considering the contribution of grain size and dislocation density to strengthening. 展开更多
关键词 High entropy alloys differential speed rolling TEXTURE Grain refinement STRENGTH Severe plastic deformation
原文传递
Microstructure and tensile properties of magnesium nanocomposites fabricated using magnesium chips and carbon black 被引量:3
2
作者 T.J.Lee W.J.Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第3期860-872,共13页
In this study,carbon black(0,0.01,0.03 and 0.08 wt%)and AZ31(Mg-3Al-lZn)magnesium chips were used to fabricate carbon black-reinforced magnesium matrix composites with extrusion or a combination of extrusion and high-... In this study,carbon black(0,0.01,0.03 and 0.08 wt%)and AZ31(Mg-3Al-lZn)magnesium chips were used to fabricate carbon black-reinforced magnesium matrix composites with extrusion or a combination of extrusion and high-ratio differential speed rolling.After hot pressing at 693 K and extrusion at 623 K with an extrusion ratio of 22,the magnesium chips coated with carbon black were soundly bonded into a bulk composite material.The grain sizes of the extruded materials were similar with a size of 48.2-51.5|im despite the difference in the amount of carbon black.The yield strength and ultimate tensile strength increased from 177 to 191 MPa and from 240 to 265 MPa,respectively,as a result of the addition of 0.01%carbon black;however,a further increase in the strength was marginal with additional carbon black.The same trend was observed in the strain hardening behavior.The tensile elongation increased by to the addition of 0.01%carbon black(from 15.8%to 17.4%)due to the increased work hardening effect,but decreased with additional carbon black due to its agglomeration and poor dispersion at higher concentration.After high-ratio differential speed rolling(HRDSR)on the extruded materials and subsequent annealing,the AZ31 and AZ31 composites had a similar fine grain size of 16.3-17.9 p.m.The annealed HRDSR composites showed the best mechanical properties at a higher content of carbon black(0.03%)compared to that(0.01%)for the extruded composites.This resulted from the enhanced dispersion effect of the carbon black due to the high shear flow induced during the HRDSR process.The extruded composites exhibited the three distinct hardening stages(stage II,stage III and stage IV),while the annealed HRDSR composites mainly displayed the stage III hardening.The addition of carbon black increased the strain hardening rate at all the strain hardening stages in both of the extruded and annealed HRDSR materials.At the initial hardening stage,the strain hardening rates of the extruded composites were higher than those of the annealed HRDSR composites,but this became reversed at the later stage of hardening.Possible explanations for this observation were discussed.The strength analysis suggests that dislocation-carbon black interaction by Orowan strengthening and dislocation generation due to a difference in thermal expansion between matrix and carbon black are the major strengthening mechanisms. 展开更多
关键词 Recycling Magnesium alloys chips Carbon black NANOCOMPOSITES EXTRUSION differential speed rolling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部