In this article, we investigate the existence of periodic solutions for a class of nonautonomous second-order differential systems with p(t)-Laplacian. Some multiplicity results are obtained by using critical point th...In this article, we investigate the existence of periodic solutions for a class of nonautonomous second-order differential systems with p(t)-Laplacian. Some multiplicity results are obtained by using critical point theory, which extend some known results.展开更多
Using perturbation results on the sums of ranges of nonlinear accretive mappings of Calvert and Gupta, we present some abstract results for the existence of the solutions of nonlinear Neumann elliptic systems which is...Using perturbation results on the sums of ranges of nonlinear accretive mappings of Calvert and Gupta, we present some abstract results for the existence of the solutions of nonlinear Neumann elliptic systems which is related to the so-called generalized (p, q)-Laplacian in this paper. The systems discussed in this paper and the method used extend and complement some of the previous work.展开更多
基金Supported by the Natural Science Foundation of Anhui Province(1408085MA02, 1208085 MA13, 1308085MA01, 1308085QA15) Supported by the Key Foundation of Anhui Education Bureau (KJ2012A019, KJ2013A028)+2 种基金 Supported by the National Natural Science Foundation of China(11271371, 11301 004) Supported by the Research Fund for the Doctoral Program of Higher Education(20113401110001) Supported by 211 Project of Anhui University(02303129, 02303303-33030011, 02303902-39020011, KYXL2012004 XJYJXKC04, yfcl00012)
文摘In this article, we investigate the existence of periodic solutions for a class of nonautonomous second-order differential systems with p(t)-Laplacian. Some multiplicity results are obtained by using critical point theory, which extend some known results.
基金supported by Anhui Provincial Nature Science Foundation(1208085MA13)the Research Fund for the Doctoral Program of Higher Education(20103401120002,20113401120001)+1 种基金211 Project of Anhui University(02303129,KJTD002B,02303303-33030011,02303902-39020011)the Key Foundation of Anhui Education Bureau(KJ2012A019)
基金Supported by the National Nature Science Foundation of China (Grant No10771050)the Natural Science Foundation of Hebei Province (Grant No A2010001482)the Project of Science and Research of Hebei Education Department (Grant No2010125)
文摘Using perturbation results on the sums of ranges of nonlinear accretive mappings of Calvert and Gupta, we present some abstract results for the existence of the solutions of nonlinear Neumann elliptic systems which is related to the so-called generalized (p, q)-Laplacian in this paper. The systems discussed in this paper and the method used extend and complement some of the previous work.