An efficient numerical approach for the general thermomechanical problems was developed and it was tested for a two-dimensional thermoelasticity problem. The main idea of our numerical method is based on the reduction...An efficient numerical approach for the general thermomechanical problems was developed and it was tested for a two-dimensional thermoelasticity problem. The main idea of our numerical method is based on the reduction procedure of the original system of PDEs describing coupled thermomechanical behavior to a system of Differential Algebraic Equations (DAEs) where the stress-strain relationships are treated as algebraic equations. The resulting system of DAEs was then solved with a Backward Differentiation Formula (BDF) using a fully implicit algorithm. The described procedure was explained in detail, and its effectiveness was demonstrated on the solution of a transient uncoupled thermoelastic problem, for which an analytical solution is known, as well as on a fully coupled problem in the two-dimensional case.展开更多
A class of parallel Rosenbrock methods for differential algebraic equations are presented in this paper. The local truncation errors are defined and the order conditions are established by using the DA-trees and DA-se...A class of parallel Rosenbrock methods for differential algebraic equations are presented in this paper. The local truncation errors are defined and the order conditions are established by using the DA-trees and DA-series. The paper also deals with the convergence of the parallel Rosenbrock methods for h -> 0 and states the bounds for the global errors of the methods. Some particular methods are obtained by solving the order equations and a numerical example is given, from which the theoretical orders are actually observed.展开更多
We present a fast iterative solver for scattering problems in 2D,where a penetrable object with compact support is considered.By representing the scattered field as a volume potential in terms of the Green’s function...We present a fast iterative solver for scattering problems in 2D,where a penetrable object with compact support is considered.By representing the scattered field as a volume potential in terms of the Green’s function,we arrive at the Lippmann-Schwinger equation in integral form,which is then discretized using an appropriate quadrature technique.The discretized linear system is then solved using an iterative solver accelerated by Directional Algebraic Fast Multipole Method(DAFMM).The DAFMM presented here relies on the directional admissibility condition of the 2D Helmholtz kernel[1],and the construction of low-rank factorizations of the appropriate low-rank matrix sub-blocks is based on our new Nested Cross Approximation(NCA)[2].The advantage of the NCA described in[2]is that the search space of so-called far-field pivots is smaller than that of the existing NCAs[3,4].Another significant contribution of this work is the use of HODLR based direct solver[5]as a preconditioner to further accelerate the iterative solver.In one of our numerical experiments,the iterative solver does not converge without a preconditioner.We show that the HODLR preconditioner is capable of solving problems that the iterative solver can not.Another noteworthy contribution of this article is that we perform a comparative study of the HODLR based fast direct solver,DAFMMbased fast iterative solver,and HODLR preconditioned DAFMM based fast iterative solver for the discretized Lippmann-Schwinger problem.To the best of our knowledge,this work is one of the first to provide a systematic study and comparison of these different solvers for various problem sizes and contrast functions.In the spirit of reproducible computational science,the implementation of the algorithms developed in this article is made available at https://github.com/vaishna77/Lippmann_Schwinger_Solver.展开更多
针对轻型分组密码LED提出了一种基于碰撞模型的代数旁路攻击。利用代数攻击方法建立密码算法等效布尔代数方程组,采集算法运行中泄露的功耗信息并转换为碰撞信息,并将碰撞信息转换成额外方程组,从而利用CryptoMiniSAT解析器求解密钥。...针对轻型分组密码LED提出了一种基于碰撞模型的代数旁路攻击。利用代数攻击方法建立密码算法等效布尔代数方程组,采集算法运行中泄露的功耗信息并转换为碰撞信息,并将碰撞信息转换成额外方程组,从而利用CryptoMiniSAT解析器求解密钥。实验结果表明:旁路碰撞信息可有效降低方程组求解的复杂度;已知明文条件下,利用2轮最少50%的随机碰撞信息,即可在158.5 s内恢复64 bit LED完整密钥。此外,该方法也可用于其他分组密码功耗碰撞分析。展开更多
文摘An efficient numerical approach for the general thermomechanical problems was developed and it was tested for a two-dimensional thermoelasticity problem. The main idea of our numerical method is based on the reduction procedure of the original system of PDEs describing coupled thermomechanical behavior to a system of Differential Algebraic Equations (DAEs) where the stress-strain relationships are treated as algebraic equations. The resulting system of DAEs was then solved with a Backward Differentiation Formula (BDF) using a fully implicit algorithm. The described procedure was explained in detail, and its effectiveness was demonstrated on the solution of a transient uncoupled thermoelastic problem, for which an analytical solution is known, as well as on a fully coupled problem in the two-dimensional case.
基金the National Natural Science Foundation of China (No. 19871080)
文摘A class of parallel Rosenbrock methods for differential algebraic equations are presented in this paper. The local truncation errors are defined and the order conditions are established by using the DA-trees and DA-series. The paper also deals with the convergence of the parallel Rosenbrock methods for h -> 0 and states the bounds for the global errors of the methods. Some particular methods are obtained by solving the order equations and a numerical example is given, from which the theoretical orders are actually observed.
基金the support of Women Leading IITM(India)2022 in Mathematics(SB22230053MAIITM008880)the support of Young Scientist Research Award from Board of Research in Nuclear Sciences,Department of Atomic Energy,India(No.34/20/03/2017-BRNS/34278)MATRICS grant from Science and Engineering Research Board,India(Sanction number:MTR/2019/001241).
文摘We present a fast iterative solver for scattering problems in 2D,where a penetrable object with compact support is considered.By representing the scattered field as a volume potential in terms of the Green’s function,we arrive at the Lippmann-Schwinger equation in integral form,which is then discretized using an appropriate quadrature technique.The discretized linear system is then solved using an iterative solver accelerated by Directional Algebraic Fast Multipole Method(DAFMM).The DAFMM presented here relies on the directional admissibility condition of the 2D Helmholtz kernel[1],and the construction of low-rank factorizations of the appropriate low-rank matrix sub-blocks is based on our new Nested Cross Approximation(NCA)[2].The advantage of the NCA described in[2]is that the search space of so-called far-field pivots is smaller than that of the existing NCAs[3,4].Another significant contribution of this work is the use of HODLR based direct solver[5]as a preconditioner to further accelerate the iterative solver.In one of our numerical experiments,the iterative solver does not converge without a preconditioner.We show that the HODLR preconditioner is capable of solving problems that the iterative solver can not.Another noteworthy contribution of this article is that we perform a comparative study of the HODLR based fast direct solver,DAFMMbased fast iterative solver,and HODLR preconditioned DAFMM based fast iterative solver for the discretized Lippmann-Schwinger problem.To the best of our knowledge,this work is one of the first to provide a systematic study and comparison of these different solvers for various problem sizes and contrast functions.In the spirit of reproducible computational science,the implementation of the algorithms developed in this article is made available at https://github.com/vaishna77/Lippmann_Schwinger_Solver.
文摘针对轻型分组密码LED提出了一种基于碰撞模型的代数旁路攻击。利用代数攻击方法建立密码算法等效布尔代数方程组,采集算法运行中泄露的功耗信息并转换为碰撞信息,并将碰撞信息转换成额外方程组,从而利用CryptoMiniSAT解析器求解密钥。实验结果表明:旁路碰撞信息可有效降低方程组求解的复杂度;已知明文条件下,利用2轮最少50%的随机碰撞信息,即可在158.5 s内恢复64 bit LED完整密钥。此外,该方法也可用于其他分组密码功耗碰撞分析。
文摘时间相关偏微分方程隐式离散后,通常需要求解一个稀疏线性代数方程组序列.利用序列中相邻方程组性质的差异性与相似性,自适应地选取预条件子,提升方程组序列的并行求解效率,从而缩短总体求解时间,是一个值得研究的问题.本文针对科学与工程计算中广泛使用的代数多重网格(AMG)预条件子,设计了方程组序列相关的自适应预条件策略.通过惯性约束聚变(ICF)的辐射流体力学数值模拟典型应用,验证了该策略的有效性.测试结果表明,在某高性能计算机的3125个CPU核上,自适应预条件策略可将并行效率从47%提升到61%,将模拟总时间从19.7 h降为14.5 h.