Pole-to-ground(PTG) fault analysis is of vital importance for high-voltage direct current(HVDC) grid. However, many factors are not considered in the existing studies such as the asymmetrical property of PTG fault, th...Pole-to-ground(PTG) fault analysis is of vital importance for high-voltage direct current(HVDC) grid. However, many factors are not considered in the existing studies such as the asymmetrical property of PTG fault, the coupling issue between DC transmission lines and the complexity of the structure of DC grid. This paper presents a PTG fault analysis method, which is based on common-and differential-mode(CDM)transformation. Similar to the symmetrical component method in AC system, the transformation decomposes the HVDC grid into CDM networks, which is balanced and decoupled. Then, a transfer impedance is defined and calculated based on the impedance matrices of the CDM networks. With the transfer impedance, analytical expressions of fault characteristics that vary with space and time are obtained. The proposed PTG fault analysis method is applicable to arbitrary HVDC grid topologies,and provides a new perspective to understand the fault mechanism. Moreover, the analytical expressions offer theoretical guidance for PTG fault protection. The validity of the proposed PTG fault analysis method is verified in comparison with the simulation results in PSCAD/EMTDC.展开更多
Motor impedance and mode transformation have significant effects on the electromagnetic interference(EMI)generated in motor drive systems.Stator winding faults commonly cause motor failure;however,in their early stage...Motor impedance and mode transformation have significant effects on the electromagnetic interference(EMI)generated in motor drive systems.Stator winding faults commonly cause motor failure;however,in their early stages,they may not affect the short-term operation of the motor.To date,EMI noise under the influence of premature stator winding faults has not been adequately studied,particularly the differential-mode(DM)noise due to the common-mode(CM)-to-DM transformation.This study investigates and quantifies the influence of stator winding faults on the motor DM impedance and mode transformation.First,the transmission line model of an induction motor is described based on the scattering(S)parameter measurements of each phase of the motor.It offers the flexibility to emulate different types of stator winding faults at specific locations and various severities,such that the impacts of the faults on the motor DM impedance can be easily estimated.Second,a test setup is proposed to quantify the CM-to-DM transformation due to the stator winding faults.The findings of this study reveal that even the early stages of stator winding faults can result in significant changes in the DM noise.展开更多
基金supported in part by National Key Research and Development Program of China (No.2016YFB0900100)。
文摘Pole-to-ground(PTG) fault analysis is of vital importance for high-voltage direct current(HVDC) grid. However, many factors are not considered in the existing studies such as the asymmetrical property of PTG fault, the coupling issue between DC transmission lines and the complexity of the structure of DC grid. This paper presents a PTG fault analysis method, which is based on common-and differential-mode(CDM)transformation. Similar to the symmetrical component method in AC system, the transformation decomposes the HVDC grid into CDM networks, which is balanced and decoupled. Then, a transfer impedance is defined and calculated based on the impedance matrices of the CDM networks. With the transfer impedance, analytical expressions of fault characteristics that vary with space and time are obtained. The proposed PTG fault analysis method is applicable to arbitrary HVDC grid topologies,and provides a new perspective to understand the fault mechanism. Moreover, the analytical expressions offer theoretical guidance for PTG fault protection. The validity of the proposed PTG fault analysis method is verified in comparison with the simulation results in PSCAD/EMTDC.
文摘Motor impedance and mode transformation have significant effects on the electromagnetic interference(EMI)generated in motor drive systems.Stator winding faults commonly cause motor failure;however,in their early stages,they may not affect the short-term operation of the motor.To date,EMI noise under the influence of premature stator winding faults has not been adequately studied,particularly the differential-mode(DM)noise due to the common-mode(CM)-to-DM transformation.This study investigates and quantifies the influence of stator winding faults on the motor DM impedance and mode transformation.First,the transmission line model of an induction motor is described based on the scattering(S)parameter measurements of each phase of the motor.It offers the flexibility to emulate different types of stator winding faults at specific locations and various severities,such that the impacts of the faults on the motor DM impedance can be easily estimated.Second,a test setup is proposed to quantify the CM-to-DM transformation due to the stator winding faults.The findings of this study reveal that even the early stages of stator winding faults can result in significant changes in the DM noise.