Background:This study aimed to portray the atomic intelligence and prognostic implications of differentially expressed genes and their involvement in biological pathways in endometrial carcinoma,with a specific focus ...Background:This study aimed to portray the atomic intelligence and prognostic implications of differentially expressed genes and their involvement in biological pathways in endometrial carcinoma,with a specific focus on the impacts of exercise on cancer.Methods:We utilized a multi-faceted approach,including volcano plots,Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses,Venn diagrams,protein-protein interaction networks,Kaplan-Meier survival analysis,Gene Set Variety Analysis,and single-cell transcriptomic analysis.Furthermore,we profiled tumor mutational scenes,assessed the prognostic value of immune-related features,and conducted a comprehensive examination of genetic variations and their impact on tumor mutational burden across different cancer types.Multidimensional genomic interactions and methylation elements were also investigated.Using real-time quantitative PCR and immunofluorescence staining,the effects of B-cell lymphoma 2(BCL2)silencing on TNF-αand caspase-3 gene expression were evaluated.Results:Our study identified a noteworthy number of differentially expressed genes in endometrial carcinoma with potential links to athletic performance traits.BCL2 expression levels were found to be associated with survival outcomes,and its changeability across cancers was related to immune cell infiltration and immune checkpoint gene expression.Single-cell investigations uncovered cellular complexity within tumor microenvironments and critical biological pathways in BCL2-overexpressing cells.The expression flow and mutational effect of BCL2 in endometrial carcinoma were characterized,and the prognostic implications of immune-related features were assessed.Hereditary variations,including copy number variations and their relationship with gene expression and tumor mutational burden,were investigated.Multidimensional genomic transaction highlighted the essential role of regulatory genes in cancer pathogenesis.Silencing of the BCL2 gene significantly inhibited the proliferation of HEC-108 cells and promoted apoptosis,as evidenced by decreased TNF-αgene expression and increased caspase-3 gene expression.Immunofluorescence staining further confirmed these results.Conclusion:This study gives a point-by-point understanding of the atomic intelligence and prognostic implications in endometrial carcinoma and across various other cancers.BCL2’s role as a modulatory factor within the tumor-resistant environment and its potential impact on disease prognosis and response to immunotherapy were underscored.The multidimensional genomic analysis provides insights into the complex interaction between genetic and epigenetic variables in cancer,which may shed light on future therapeutic strategies.This study indicates that silencing the BCL2 gene can significantly inhibit tumor cell proliferation and promote apoptosis through the regulation of the TNF-αand caspase-3 pathways.展开更多
Introduction:Verruca vulgaris is one of the most common low-risk HPV infections and is characterized by excessive proliferation of keratinocytes.Currently,very little genetic information is available regarding verruca...Introduction:Verruca vulgaris is one of the most common low-risk HPV infections and is characterized by excessive proliferation of keratinocytes.Currently,very little genetic information is available regarding verruca vulgaris in the Chinese population.This study aimed to obtain comprehensive transcript information of verruca vulgaris by RNA sequencing.Methods:High-throughput sequencing was performed on three fresh verruca vulgaris samples and adjacent normal skin on the Illumina sequencing platform.The transcriptomes were analyzed using bioinformatics and the differentially expressed genes(DEGs)were verified by immunohistochemistry.Verruca vulgaris exhibited a unique molecular signature.Results:In total,1,643 DEGs were identified in verruca vulgaris compared to normal skin.The functions of the DEGs were studies by Gene Ontology(GO)enrichment,Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis,DEGs Reactome analysis,disease annotation function,and STRING protein-protein interaction(PPI)network analysis.The results revealed 595 GO terms associated with the cell cycle,signal transduction,immune system,signaling molecules,and interaction.The Reactome analysis revealed enrichment in reversible hydration of carbon dioxide and BMP signaling,while the disease annotation function revealed that the enriched DEGs are involved in keratosis disorders.The STRING PPI network showed that the edges with the highest density mainly included the 2′-5′oligoadenylate synthase(OAS)family-related proteins.Furthermore,the M-code analysis found ISG15,IRF7,and OASL were scored as significant modules and their high expression compared to the control was verified by immunohistochemistry.Conclusion:These findings contribute to the genetic information of verruca vulgaris in the Chinese population,revealing that interferon-stimulated genes may play essential roles in verruca vulgaris.展开更多
BACKGROUND The incidence rate of cerebral infarction in young people is increasing day by day,the age of onset tends to be younger,and its internal pathogenesis and mechanism are very complicated,which leads to greate...BACKGROUND The incidence rate of cerebral infarction in young people is increasing day by day,the age of onset tends to be younger,and its internal pathogenesis and mechanism are very complicated,which leads to greater difficulties in treatment.Therefore,it is essential to analyze the key pathway that affects the onset of cerebral infarction in young people from the perspective of genetics.AIM To compare the differentially expressed genes in the brain tissue of young and aged rats with middle cerebral artery occlusion and to analyse their effect on the key signalling pathway involved in the development of cerebral ischaemia in young rats.METHODS The Gene Expression Omnibus 2R online analysis tool was used to analyse the differentially expressed genes in the GSE166162 dataset regarding the development of cerebral ischaemia in young and aged groups of rats.DAVID 6.8 software was further used to filter the differentially expressed genes.These genes were subjected to Gene Ontology(GO)function analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis to determine the key gene pathway that affects the occurrence of cerebral ischaemia in young rats.RESULTS Thirty-five differentially expressed genes(such as Igf2,Col1a2,and Sfrp1)were obtained;73 GO enrichment analysis pathways are mainly involved in biological processes such as drug response,amino acid stimulation response,blood vessel development,various signalling pathways,and enzyme regulation.They are involved in molecular functions such as drug binding,protein binding,dopamine binding,metal ion binding,and dopamine neurotransmitter receptor activity.KEGG pathway enrichment analysis showed a significantly enriched pathway:The cyclic adenosine monophosphate(c-AMP)signalling pathway.CONCLUSION The c-AMP signalling pathway might be the key pathway in the intervention of cerebral infarction in young people.展开更多
The term “microgravity” is used to describe the “weightlessness” or “zero-g” circumstances that can only be found in space beyond earth’s atmosphere. Rhodobacter sphaeroides is a gram-negative purple phototroph...The term “microgravity” is used to describe the “weightlessness” or “zero-g” circumstances that can only be found in space beyond earth’s atmosphere. Rhodobacter sphaeroides is a gram-negative purple phototroph, used as a model organism for this study due to its genomic complexity and metabolic versatility. Its genome has been completely sequenced, and profiles of the differential gene expression under aerobic, semi-aerobic, and photosynthetic conditions were examined. In this study, we hypothesized that R. sphaeroides will show altered growth characteristics, morphological properties, and gene expression patterns when grown under simulated microgravity. To test that, we measured the optical density and colony-forming units of cell cultures grown under both microgravity and normal gravity conditions. Differences in the cell morphology were observed using scanning electron microscopy (SEM) images by measuring the length and the surface area of the cells under both conditions. Furthermore, we also identified homologous genes of R. spheroides using the differential gene expression study of Acidovorax under microgravity in our laboratory. Growth kinetics results showed that R. sphaeroides cells grown under microgravity experience a shorter log phase and early stationary phase compared to the cells growing under normal gravity conditions. The length and surface area of the cells under microgravity were significantly higher confirming that bacterial cells experience altered morphological features when grown under microgravity conditions. Differentially expressed homologous gene analysis indicated that genes coding for several COG and GO functions, such as metabolism, signal-transduction, transcription, translation, chemotaxis, and cell motility are differentially expressed to adapt and survive microgravity.展开更多
BACKGROUND Gastric cancer(GC)has a high mortality rate worldwide.Despite significant progress in GC diagnosis and treatment,the prognosis for affected patients still remains unfavorable.AIM To identify important candi...BACKGROUND Gastric cancer(GC)has a high mortality rate worldwide.Despite significant progress in GC diagnosis and treatment,the prognosis for affected patients still remains unfavorable.AIM To identify important candidate genes related to the development of GC and iden-tify potential pathogenic mechanisms through comprehensive bioinformatics analysis.METHODS The Gene Expression Omnibus database was used to obtain the GSE183136 dataset,which includes a total of 135 GC samples.The limma package in R software was employed to identify differentially expressed genes(DEGs).Thereafter,enrichment analyses of Gene Ontology(GO)terms and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways were performed for the gene modules using the clusterProfile package in R software.The protein-protein interaction(PPI)networks of target genes were constructed using STRING and visualized by Cytoscape software.The common hub genes that emerged in the cohort of DEGs that was retrieved from the GEPIA database were then screened using a Venn Diagram.The expression levels of these overlapping genes in stomach adenocarcinoma samples and non-tumor samples and their association with prognosis in GC patients were also obtained from the GEPIA database and Kaplan-Meier curves.Moreover,real-time quantitative polymerase chain reaction(RT-qPCR)and western blotting were performed to determine the mRNA and protein levels of glutamic-pyruvic transaminase(GPT)in GC and normal immortalized cell lines.In addition,cell viability,cell cycle distribution,migration and invasion were evaluated by cell counting kit-8,flow cytometry and transwell assays.Furthermore,we also conducted a retrospective analysis on 70 GC patients diagnosed and surgically treated in Wenzhou Central Hospital,Dingli Clinical College of Wenzhou Medical University,The Second Affiliated Hospital of Shanghai University between January 2017 to December 2020.The tumor and adjacent normal samples were collected from the patients to determine the potential association between the expression level of GPT and the clinical as well as pathological features of GC patients.RESULTS We selected 19214 genes from the GSE183136 dataset,among which there were 250 downregulated genes and 401 upregulated genes in the tumor samples of stage III-IV in comparison to those in tumor samples of stage I-II with a P-value<0.05.In addition,GO and KEGG results revealed that the various upregulated DEGs were mainly enriched in plasma membrane and neuroactive ligand-receptor interaction,whereas the downregulated DEGs were primarily enriched in cytosol and pancreatic secretion,vascular smooth muscle contraction and biosynthesis of the different cofactors.Furthermore,PPI networks were constructed based on the various upregulated and downregulated genes,and there were a total 15 upregulated and 10 downregulated hub genes.After a comprehensive analysis,several hub genes,including runt-related transcription factor 2(RUNX2),salmonella pathogenicity island 1(SPI1),lysyl oxidase(LOX),fibrillin 1(FBN1)and GPT,displayed prognostic values.Interestingly,it was observed that GPT was downregulated in GC cells and its upregulation could suppress the malignant phenotypes of GC cells.Furthermore,the expression level of GPT was found to be associated with age,lymph node metastasis,pathological staging and distant metastasis(P<0.05).CONCLUSION RUNX2,SPI1,LOX,FBN1 and GPT were identified key hub genes in GC by bioinformatics analysis.GPT was significantly associated with the prognosis of GC,and its upregulation can effectively inhibit the proliferative,migrative and invasive capabilities of GC cells.展开更多
Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study lever...Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study leverages computational tools to dissect the differential gene expression profiles in retinoblastoma. Methods: Employing an in silico approach, we analyzed gene expression data from public repositories by applying rigorous statistical models, including limma and de seq 2, for identifying differentially expressed genes DEGs. Our findings were validated through cross-referencing with independent datasets and existing literature. We further employed functional annotation and pathway analysis to elucidate the biological significance of these DEGs. Results: Our computational analysis confirmed the dysregulation of key retinoblastoma-associated genes. In comparison to normal retinal tissue, RB1 exhibited a 2.5-fold increase in expression (adjusted p Conclusions: Our analysis reinforces the critical genetic alterations known in retinoblastoma and unveils new avenues for research into the disease’s molecular basis. The discovery of chemoresistance markers and immune-related genes opens potential pathways for personalized treatment strategies. The study’s outcomes emphasize the power of in silico analyses in unraveling complex cancer genomics.展开更多
Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese b...Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar(Jimai 20) during grain development using the Gene Chip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis(DPA) was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves.Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and Map Man analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by q RT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.展开更多
BACKGROUND DNA methylation, acknowledged as a key modification in the field of epigenetics, regulates gene expression at the transcriptional level. Aberrant methylation in DNA regulatory regions could upregulate oncog...BACKGROUND DNA methylation, acknowledged as a key modification in the field of epigenetics, regulates gene expression at the transcriptional level. Aberrant methylation in DNA regulatory regions could upregulate oncogenes and downregulate tumor suppressor genes without changing the sequences.However, studies of methylation in the control of gene expression are still inadequate. In the present research, we performed bioinformatics analysis to clarify the function of methylation and supply candidate methylation-related biomarkers and drivers for colon cancer.AIM To identify and analyze methylation-regulated differentially expressed genes(MeDEGs) in colon cancer by bioinformatics analysis.METHODS We downloaded RNA expression profiles, Illumina Human Methylation 450 K BeadChip data, and clinical data of colon cancer from The Cancer Genome Atlas project. MeDEGs were identified by analyzing the gene expression and methylation levels using the edgeR and limma package in R software. Gene ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were performed in the DAVID database and KEGG Orthology-Based Annotation System 3.0, respectively. We then conducted Kaplan–Meier survival analysis to explore the relationship between methylation and expression and prognosis. Gene set enrichment analysis(GSEA) and investigation of protein-protein interactions(PPI) were performed to clarify the function of prognosis-related genes.RESULTS A total of 5 up-regulated and 81 down-regulated genes were identified asMeDEGs. GO and KEGG pathway analyses indicated that MeDEGs were enriched in multiple cancer-related terms. Furthermore, Kaplan–Meier survival analysis showed that the prognosis was negatively associated with the methylation status of glial cell-derived neurotrophic factor(GDNF) and reelin(RELN). In PPI networks, GDNF and RELN interact with neural cell adhesion molecule 1. Besides, GDNF can interact with GDNF family receptor alpha(GFRA1), GFRA2, GFRA3, and RET. RELN can interact with RAFAH1 B1,disabled homolog 1, very low-density lipoprotein receptor, lipoprotein receptorrelated protein 8, and NMDA 2 B. Based on GSEA, hypermethylation of GDNF and RELN were both significantly associated with pathways including "RNA degradation," "ribosome," "mismatch repair," "cell cycle" and "base excision repair."CONCLUSION Aberrant DNA methylation plays an important role in colon cancer progression.MeDEGs that are associated with the overall survival of patients may be potential targets in tumor diagnosis and treatment.展开更多
Blooming date is an important trait in fruit tree species.Although several quantitative trait loci confirming blooming date were identified in Prunus spp.,the molecular mechanism underlying it remains unclear.Arising ...Blooming date is an important trait in fruit tree species.Although several quantitative trait loci confirming blooming date were identified in Prunus spp.,the molecular mechanism underlying it remains unclear.Arising from this,the transcriptomes of normal blooming and lateblooming Siberian apricot(P.sibirica L.)flower buds were analyzed using RNA-seq technology.A total of 68,855 unigenes were de novo assembled,among which 1204 were differentially expressed between normal and late blooming.Gene ontology enrichment analysis revealed that biological processes were enriched with metabolic processes.The catalytic-related gene transcripts between the two types of blooming were significantly changed in the molecular function.Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that 156 genes were successfully annotated and 75 pathways enriched.Genes for gibberellin biosynthesis were up-regulated in normal blooming,whereas abscisic acid degradation-related genes were also up-regulated in normal blooming.Moreover,circadian rhythms related genes including EARLY FLOWERING 4,LATE ELONGATED HYPOCOTYL and CIRCANDIAN CLOCK ASSOCIATED1 were all up-regulated in normal blooming,indicating that circadian rhythms have a very important role in controlling blooming date.Furthermore,zinc finger protein CONSTANS-LIKE 12 was blasted onto the quantitative trait loci region on linkage group 4 in peach.However,changes in the abundance of key flowering genes such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1,FLOWERING LOCU T,LEAFY and FLOWERING LOCUS C were not significantly different,indicating that further investigation should explore the function of these genes on blooming date.The outcomes of this study will provide a valuable platform for further research on the molecular mechanism of blooming date in Prunus.展开更多
Gene spectrum analysis has shown that gene expression and signaling pathways change dramatically after spinal cord injury,which may affect the microenvironment of the damaged site.Microarray analysis provides a new op...Gene spectrum analysis has shown that gene expression and signaling pathways change dramatically after spinal cord injury,which may affect the microenvironment of the damaged site.Microarray analysis provides a new opportunity for investigating diagnosis,treatment,and prognosis of spinal cord injury.However,differentially expressed genes are not consistent among studies,and many key genes and signaling pathways have not yet been accurately studied.GSE5296 was retrieved from the Gene Expression Omnibus DataSet.Differentially expressed genes were obtained using R/Bioconductor software(expression changed at least two-fold;P < 0.05).Database for Annotation,Visualization and Integrated Discovery was used for functional annotation of differentially expressed genes and Animal Transcription Factor Database for predicting potential transcription factors.The resulting transcription regulatory protein interaction network was mapped to screen representative genes and investigate their diagnostic and therapeutic value for disease.In total,this study identified 109 genes that were upregulated and 30 that were downregulated at 0.5,4,and 24 hours,and 3,7,and 28 days after spinal cord injury.The number of downregulated genes was smaller than the number of upregulated genes at each time point.Database for Annotation,Visualization and Integrated Discovery analysis found that many inflammation-related pathways were upregulated in injured spinal cord.Additionally,expression levels of these inflammation-related genes were maintained for at least 28 days.Moreover,399 regulation modes and 77 nodes were shown in the protein-protein interaction network of upregulated differentially expressed genes.Among the 10 upregulated differentially expressed genes with the highest degrees of distribution,six genes were transcription factors.Among these transcription factors,ATF3 showed the greatest change.ATF3 was upregulated within 30 minutes,and its expression levels remained high at28 days after spinal cord injury.These key genes screened by bioinformatics tools can be used as biological markers to diagnose diseases and provide a reference for identifying therapeutic targets.展开更多
Background:Tuberculosis is a leading cause of death worldwide.BCG is an effective vaccine,but not widely used in many parts of the world due to a variety of issues.Mycobacterium vaccae(M.vaccae)is another vaccine used...Background:Tuberculosis is a leading cause of death worldwide.BCG is an effective vaccine,but not widely used in many parts of the world due to a variety of issues.Mycobacterium vaccae(M.vaccae)is another vaccine used in human subjects to prevent tuberculosis.In the current study,we investigated the potential mechanisms of M.vaccae vaccination by determining differentially expressed genes in mice infected with M.tuberculosis before and after M.vaccae vaccination.Methods:Three days after exposure to M.tuberculosis H37 Rv strain(5×10~5 CFU),adult BALB/c mice randomly received either M.vaccae vaccine(22.5μg)or vehicle via intramuscular injection(n=8).Booster immunization was conducted 14 and 28 days after the primary immunization.Differentially expressed genes were identified by microarray followed by standard bioinformatics analysis.Results:M.vaccae vaccination provided protection against M.tuberculosis infection(most prominent in the lungs).We identified 2,326 upregulated and 2,221 downregulated genes in vaccinated mice.These changes could be mapped to a total of 123 signaling pathways(68 upregulated and 55 downregulated).Further analysis pinpointed to the MyD88-dependent TLR signaling pathway and PI3 K-Akt signaling pathway as most likely to be functional.Conclusions:M.vaccae vaccine provided good protection in mice against M.tuberculosis infection,via a highly complex set of molecular changes.Our findings may provide clue to guide development of more effective vaccine against tuberculosis.展开更多
One of the impediments in the genetic improvement of cotton fiber is the paucity of information about genes associated with fiber development.Availability of chromosome arm substitution line CS-
Complex pathological changes occur during the development of spinal cord injury(SCI),and determining the underlying molecular events that occur during SCI is necessary for the development of promising molecular target...Complex pathological changes occur during the development of spinal cord injury(SCI),and determining the underlying molecular events that occur during SCI is necessary for the development of promising molecular targets and therapeutic strategies.This study was designed to explore differentially expressed genes(DEGs)associated with the acute and chronic stages of SCI using bioinformatics analysis.Gene expression profiles(GSE45006,GSE93249,and GSE45550)were downloaded from the Gene Expression Omnibus database.SCI-associated DEGs from rat samples were identified,and Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed.In addition,a protein-protein interaction network was constructed.Approximately 66 DEGs were identified in GSE45550 between 3–14 days after SCI,whereas 2418 DEGs were identified in GSE450061–56 days after SCI.Moreover,1263,195,and 75 overlapping DEGs were identified between these two expression profiles,3,7/8,and 14 days after SCI,respectively.Additionally,16 overlapping DEGs were obtained in GSE450061–14 days after SCI,including Pank1,Hn1,Tmem150c,Rgd1309676,Lpl,Mdh1,Nnt,Loc100912219,Large1,Baiap2,Slc24a2,Fundc2,Mrps14,Slc16a7,Obfc1,and Alpk3.Importantly,3882 overlapping DEGs were identified in GSE932491–6 months after SCI,including 3316 protein-coding genes and 567 long non-coding RNA genes.A comparative analysis between GSE93249 and GSE45006 resulted in the enrichment of 1135 overlapping DEGs.The significant functions of these 1135 genes were correlated with the response to the immune effector process,the innate immune response,and cytokine production.Moreover,the biological processes and KEGG pathways of the overlapping DEGs were significantly enriched in immune system-related pathways,osteoclast differentiation,the nuclear factor-κB signaling pathway,and the chemokine signaling pathway.Finally,an analysis of the overlapping DEGs associated with both acute and chronic SCI,assessed using the expression profiles GSE93249 and GSE45006,identified four overlapping DEGs:Slc16a7,Alpk3,Lpl and Nnt.These findings may be useful for revealing the biological processes associated with SCI and the development of targeted intervention strategies.展开更多
Melon (Cucumis melo L.) is an important horticultural crop worldwide. Ethylene regulates the ripening process and affects the ripening rate. To screen genes that are differentially expressed at the burst of ethylene...Melon (Cucumis melo L.) is an important horticultural crop worldwide. Ethylene regulates the ripening process and affects the ripening rate. To screen genes that are differentially expressed at the burst of ethylene climacteric in melon fruit, we performed suppression subtractive hybridization (SSH) to generate forward and reverse libraries, for which we sequenced 439 and 445 clones, respectively. Our BLAST analysis showed that the genes from the 2 libraries were involved in metabolism, signal transduction, cell structure, transcription, translation, and defense. Six genes were analyzed by qRT-PCR during the differential developmental stage of melon fruit. Our results provide new insight into the understanding of climacteric ripening of melon fruit.展开更多
The biological chemistry would be responsible for the meat quality. This study tried to investigate the transcript expression profile and explain the characteristics of differentially expressed genes between the Wujin...The biological chemistry would be responsible for the meat quality. This study tried to investigate the transcript expression profile and explain the characteristics of differentially expressed genes between the Wujin and Landrace pigs. The results showed that 526 differentially expressed genes were found by comparing the transcript expression profile of muscle tissue between Wujin and Landrace pigs. Among them, 335 genes showed up-regulations and 191 genes showed down-regulations in Wujin pigs compared with the Landrace pigs. Gene ontology (GO) analysis indicated that the differentially expressed genes were clustered into three groups involving in protein synthesis, energy metabolism and immune response. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis found that these differentially expressed genes participated in protein synthesis metabolism, energy metabolism and immune response pathway. The Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis of protein function and protein domains function also confirmed that differentially expressed genes belonged to protein synthesis, energy metabolism and immune response. Genes related protein synthesis metabolism pathway in Landrace was higher than in Wujin pigs. However, differentially expressed genes related energy metabolism and immune response was up-regulated in Wujin pigs compared with Landrace pigs. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray. These suggested that the genes related to protein synthesis, energy metabolism and immune response would contribute to the growth performance, meat quality as well as anti-disease capacity.展开更多
In order to screen the genes controlling watermelon rind color and luster, the experiment was carried out with yellow watermelon skin mutants as tester and green wild type watermelon as control, and transcriptome sequ...In order to screen the genes controlling watermelon rind color and luster, the experiment was carried out with yellow watermelon skin mutants as tester and green wild type watermelon as control, and transcriptome sequencing and bioinformatics analysis were done. The results show that 34.27 Gb clean data were got by transcriptome sequencing. There are 261 differentially expressed genes among Y_1_vs_G_1, Y_2_vs_G_2 and Y_3_vs_G_3. The pathways contenting most differentially expressed genes are plant hormone signal transduction pathway, phenylpropanoid biosynthesis pathway, photosynthesis pathway, starch and sucrose metabolism pathway. 9-cis-epoxycarotenoid dioxygenase(Cla002942), alcohol dehydrogenase(Cla004992), photosystem Ⅰ reaction center subunit Ⅲ, chloroplastic(precursor)(Cla009181), long-chain acyl coenzyme A synthetase(Cla017341), threonine dehydratase biosynthetic(Cla018352) candidates genes were screened out.展开更多
Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods:...Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe, mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip.The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5〉3.5 meant significant up-regulation. Cy3/Cy5〈0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.展开更多
Summary: This study aimed to identify the differentially expressed genes after silencing of β-catenin in multiple myeloma transduced with β-catenin shRNA. The DNA microarray dataset GSE17385 was downloaded from Gen...Summary: This study aimed to identify the differentially expressed genes after silencing of β-catenin in multiple myeloma transduced with β-catenin shRNA. The DNA microarray dataset GSE17385 was downloaded from Gene Expression Omnibus, including 3 samples of MM1.S (human multiple mye- loma cell lines) cells transduced with control shRNA and 3 samples of MM1.S cells transduced with β-catenin shRNA. Then the differentially expressed genes (DEGs) were screened by using Limma. Their underlying functions were analyzed by employing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Moreover, DEGs annotation was conducted based on the databases of tumor associated genes, tumor suppressed genes and the transcriptional regulation from patterns to profiles. Furthermore, the protein-protein interaction (PPI) relationship was obtained from STRING and the protein-protein interaction network and the functional modules were visual- ized by Cytoscape. Then, the pathway enrichment for the DEGs in the functional module was per- formed. A total of 301 DEGs, including 124 up-regulated and 117 down-regulated DEGs, were screened. Functional enrichment showed that CCNB1 and CDK1 were significantly related to the function of cell proliferation. FOS and JUN were related to innate immune response-activating signal transduction. Pathway enrichment analysis indicated that CCNB 1 and CDK1 were most significantly enriched in the pathway of cell cycle. Besides, FOS and JUN were significantly enriched in the Toll-like receptor signaling pathway. FOXM1 was identified as a transcription factor. Moreover, there existed interactions among CCNB1, FOXM1 and CDK1 in PPI network. The expression of FOS, JUN, CCNB1, FOXM1 and CDK1 may be affected by β-catenin in multiple myeloma.展开更多
The initial mechanical damage of a spinal cord injury(SCI)triggers a progressive secondary injury cascade,which is a complicated process integrating multiple systems and cells.It is crucial to explore the molecular an...The initial mechanical damage of a spinal cord injury(SCI)triggers a progressive secondary injury cascade,which is a complicated process integrating multiple systems and cells.It is crucial to explore the molecular and biological process alterations that occur after SCI for therapy development.The differences between the rostral and caudal regions around an SCI lesion have received little attention.Here,we analyzed the differentially expressed genes between rostral and caudal sites after injury to determine the biological processes in these two segments after SCI.We identified a set of differentially expressed genes,including Col3a1,Col1a1,Dcn,Fn1,Kcnk3,and Nrg1,between rostral and caudal regions at different time points following SCI.Functional enrichment analysis indicated that these genes were involved in response to mechanical stimulus,blood vessel development,and brain development.We then chose Col3a1,Col1a1,Dcn,Fn1,Kcnk3,and Nrg1 for quantitative real-time PCR and Fn1 for immunostaining validation.Our results indicate alterations in different biological events enriched in the rostral and caudal lesion areas,providing new insights into the pathology of SCI.展开更多
A cDNA subtractive library enriched for dark-induced up-regulated ESTs was constructed by suppression subtractive hybridization(SSH) from leaf tissues of soybean cultivar DongNong L13 treated with short-day(8-h light/...A cDNA subtractive library enriched for dark-induced up-regulated ESTs was constructed by suppression subtractive hybridization(SSH) from leaf tissues of soybean cultivar DongNong L13 treated with short-day(8-h light/16-h dark) and long-day(16-h light/8-h dark) conditions.A total of 148 clones were sequenced,representing 76 unique ESTs which corresponded to about 20% of 738 clones from the cDNA library and showed a significant up-regulation of at least three fold verified by dot blot hybridization.The putative functions of ESTs were predicted by Blastn and Blastx.The 43 differentially expressed genes identified by subtractions were classified according to their putative functions generated by Blast analysis.Genetic functional analysis indicated that putative proteins encoded by these genes were related to diverse functions during organism development,which include biological regulation pathways such as transcription,signal transduction and programmed cell death,protein,nucleic acid and carbohydrate macromolecule degradation,the cell wall modification,primary and secondary metabolism and stress response.Two soybean transcription factors enhanced in SD conditions,GAMYB-binding protein and DNA binding protein RAV cDNAs that may be involved in SD soybean photoperiod response,had been isolated using 5'-and 3'-rapid amplification of cDNA ends(RACE)(Genbank Accession numbers DQ112540 and DQ147914).展开更多
基金supported by the Science and Technology Beneficiary Program of Ningxia Hui Autonomous Region(No.2023CMG03027)the Ningxia Key Research and Development Program(No.2022BEG03167)the National Natural Science Foundation of China(No.82060275).
文摘Background:This study aimed to portray the atomic intelligence and prognostic implications of differentially expressed genes and their involvement in biological pathways in endometrial carcinoma,with a specific focus on the impacts of exercise on cancer.Methods:We utilized a multi-faceted approach,including volcano plots,Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses,Venn diagrams,protein-protein interaction networks,Kaplan-Meier survival analysis,Gene Set Variety Analysis,and single-cell transcriptomic analysis.Furthermore,we profiled tumor mutational scenes,assessed the prognostic value of immune-related features,and conducted a comprehensive examination of genetic variations and their impact on tumor mutational burden across different cancer types.Multidimensional genomic interactions and methylation elements were also investigated.Using real-time quantitative PCR and immunofluorescence staining,the effects of B-cell lymphoma 2(BCL2)silencing on TNF-αand caspase-3 gene expression were evaluated.Results:Our study identified a noteworthy number of differentially expressed genes in endometrial carcinoma with potential links to athletic performance traits.BCL2 expression levels were found to be associated with survival outcomes,and its changeability across cancers was related to immune cell infiltration and immune checkpoint gene expression.Single-cell investigations uncovered cellular complexity within tumor microenvironments and critical biological pathways in BCL2-overexpressing cells.The expression flow and mutational effect of BCL2 in endometrial carcinoma were characterized,and the prognostic implications of immune-related features were assessed.Hereditary variations,including copy number variations and their relationship with gene expression and tumor mutational burden,were investigated.Multidimensional genomic transaction highlighted the essential role of regulatory genes in cancer pathogenesis.Silencing of the BCL2 gene significantly inhibited the proliferation of HEC-108 cells and promoted apoptosis,as evidenced by decreased TNF-αgene expression and increased caspase-3 gene expression.Immunofluorescence staining further confirmed these results.Conclusion:This study gives a point-by-point understanding of the atomic intelligence and prognostic implications in endometrial carcinoma and across various other cancers.BCL2’s role as a modulatory factor within the tumor-resistant environment and its potential impact on disease prognosis and response to immunotherapy were underscored.The multidimensional genomic analysis provides insights into the complex interaction between genetic and epigenetic variables in cancer,which may shed light on future therapeutic strategies.This study indicates that silencing the BCL2 gene can significantly inhibit tumor cell proliferation and promote apoptosis through the regulation of the TNF-αand caspase-3 pathways.
基金The National Natural Science Foundation of China(Grant No.81903227)supported our study.
文摘Introduction:Verruca vulgaris is one of the most common low-risk HPV infections and is characterized by excessive proliferation of keratinocytes.Currently,very little genetic information is available regarding verruca vulgaris in the Chinese population.This study aimed to obtain comprehensive transcript information of verruca vulgaris by RNA sequencing.Methods:High-throughput sequencing was performed on three fresh verruca vulgaris samples and adjacent normal skin on the Illumina sequencing platform.The transcriptomes were analyzed using bioinformatics and the differentially expressed genes(DEGs)were verified by immunohistochemistry.Verruca vulgaris exhibited a unique molecular signature.Results:In total,1,643 DEGs were identified in verruca vulgaris compared to normal skin.The functions of the DEGs were studies by Gene Ontology(GO)enrichment,Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis,DEGs Reactome analysis,disease annotation function,and STRING protein-protein interaction(PPI)network analysis.The results revealed 595 GO terms associated with the cell cycle,signal transduction,immune system,signaling molecules,and interaction.The Reactome analysis revealed enrichment in reversible hydration of carbon dioxide and BMP signaling,while the disease annotation function revealed that the enriched DEGs are involved in keratosis disorders.The STRING PPI network showed that the edges with the highest density mainly included the 2′-5′oligoadenylate synthase(OAS)family-related proteins.Furthermore,the M-code analysis found ISG15,IRF7,and OASL were scored as significant modules and their high expression compared to the control was verified by immunohistochemistry.Conclusion:These findings contribute to the genetic information of verruca vulgaris in the Chinese population,revealing that interferon-stimulated genes may play essential roles in verruca vulgaris.
文摘BACKGROUND The incidence rate of cerebral infarction in young people is increasing day by day,the age of onset tends to be younger,and its internal pathogenesis and mechanism are very complicated,which leads to greater difficulties in treatment.Therefore,it is essential to analyze the key pathway that affects the onset of cerebral infarction in young people from the perspective of genetics.AIM To compare the differentially expressed genes in the brain tissue of young and aged rats with middle cerebral artery occlusion and to analyse their effect on the key signalling pathway involved in the development of cerebral ischaemia in young rats.METHODS The Gene Expression Omnibus 2R online analysis tool was used to analyse the differentially expressed genes in the GSE166162 dataset regarding the development of cerebral ischaemia in young and aged groups of rats.DAVID 6.8 software was further used to filter the differentially expressed genes.These genes were subjected to Gene Ontology(GO)function analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis to determine the key gene pathway that affects the occurrence of cerebral ischaemia in young rats.RESULTS Thirty-five differentially expressed genes(such as Igf2,Col1a2,and Sfrp1)were obtained;73 GO enrichment analysis pathways are mainly involved in biological processes such as drug response,amino acid stimulation response,blood vessel development,various signalling pathways,and enzyme regulation.They are involved in molecular functions such as drug binding,protein binding,dopamine binding,metal ion binding,and dopamine neurotransmitter receptor activity.KEGG pathway enrichment analysis showed a significantly enriched pathway:The cyclic adenosine monophosphate(c-AMP)signalling pathway.CONCLUSION The c-AMP signalling pathway might be the key pathway in the intervention of cerebral infarction in young people.
文摘The term “microgravity” is used to describe the “weightlessness” or “zero-g” circumstances that can only be found in space beyond earth’s atmosphere. Rhodobacter sphaeroides is a gram-negative purple phototroph, used as a model organism for this study due to its genomic complexity and metabolic versatility. Its genome has been completely sequenced, and profiles of the differential gene expression under aerobic, semi-aerobic, and photosynthetic conditions were examined. In this study, we hypothesized that R. sphaeroides will show altered growth characteristics, morphological properties, and gene expression patterns when grown under simulated microgravity. To test that, we measured the optical density and colony-forming units of cell cultures grown under both microgravity and normal gravity conditions. Differences in the cell morphology were observed using scanning electron microscopy (SEM) images by measuring the length and the surface area of the cells under both conditions. Furthermore, we also identified homologous genes of R. spheroides using the differential gene expression study of Acidovorax under microgravity in our laboratory. Growth kinetics results showed that R. sphaeroides cells grown under microgravity experience a shorter log phase and early stationary phase compared to the cells growing under normal gravity conditions. The length and surface area of the cells under microgravity were significantly higher confirming that bacterial cells experience altered morphological features when grown under microgravity conditions. Differentially expressed homologous gene analysis indicated that genes coding for several COG and GO functions, such as metabolism, signal-transduction, transcription, translation, chemotaxis, and cell motility are differentially expressed to adapt and survive microgravity.
文摘BACKGROUND Gastric cancer(GC)has a high mortality rate worldwide.Despite significant progress in GC diagnosis and treatment,the prognosis for affected patients still remains unfavorable.AIM To identify important candidate genes related to the development of GC and iden-tify potential pathogenic mechanisms through comprehensive bioinformatics analysis.METHODS The Gene Expression Omnibus database was used to obtain the GSE183136 dataset,which includes a total of 135 GC samples.The limma package in R software was employed to identify differentially expressed genes(DEGs).Thereafter,enrichment analyses of Gene Ontology(GO)terms and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways were performed for the gene modules using the clusterProfile package in R software.The protein-protein interaction(PPI)networks of target genes were constructed using STRING and visualized by Cytoscape software.The common hub genes that emerged in the cohort of DEGs that was retrieved from the GEPIA database were then screened using a Venn Diagram.The expression levels of these overlapping genes in stomach adenocarcinoma samples and non-tumor samples and their association with prognosis in GC patients were also obtained from the GEPIA database and Kaplan-Meier curves.Moreover,real-time quantitative polymerase chain reaction(RT-qPCR)and western blotting were performed to determine the mRNA and protein levels of glutamic-pyruvic transaminase(GPT)in GC and normal immortalized cell lines.In addition,cell viability,cell cycle distribution,migration and invasion were evaluated by cell counting kit-8,flow cytometry and transwell assays.Furthermore,we also conducted a retrospective analysis on 70 GC patients diagnosed and surgically treated in Wenzhou Central Hospital,Dingli Clinical College of Wenzhou Medical University,The Second Affiliated Hospital of Shanghai University between January 2017 to December 2020.The tumor and adjacent normal samples were collected from the patients to determine the potential association between the expression level of GPT and the clinical as well as pathological features of GC patients.RESULTS We selected 19214 genes from the GSE183136 dataset,among which there were 250 downregulated genes and 401 upregulated genes in the tumor samples of stage III-IV in comparison to those in tumor samples of stage I-II with a P-value<0.05.In addition,GO and KEGG results revealed that the various upregulated DEGs were mainly enriched in plasma membrane and neuroactive ligand-receptor interaction,whereas the downregulated DEGs were primarily enriched in cytosol and pancreatic secretion,vascular smooth muscle contraction and biosynthesis of the different cofactors.Furthermore,PPI networks were constructed based on the various upregulated and downregulated genes,and there were a total 15 upregulated and 10 downregulated hub genes.After a comprehensive analysis,several hub genes,including runt-related transcription factor 2(RUNX2),salmonella pathogenicity island 1(SPI1),lysyl oxidase(LOX),fibrillin 1(FBN1)and GPT,displayed prognostic values.Interestingly,it was observed that GPT was downregulated in GC cells and its upregulation could suppress the malignant phenotypes of GC cells.Furthermore,the expression level of GPT was found to be associated with age,lymph node metastasis,pathological staging and distant metastasis(P<0.05).CONCLUSION RUNX2,SPI1,LOX,FBN1 and GPT were identified key hub genes in GC by bioinformatics analysis.GPT was significantly associated with the prognosis of GC,and its upregulation can effectively inhibit the proliferative,migrative and invasive capabilities of GC cells.
文摘Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study leverages computational tools to dissect the differential gene expression profiles in retinoblastoma. Methods: Employing an in silico approach, we analyzed gene expression data from public repositories by applying rigorous statistical models, including limma and de seq 2, for identifying differentially expressed genes DEGs. Our findings were validated through cross-referencing with independent datasets and existing literature. We further employed functional annotation and pathway analysis to elucidate the biological significance of these DEGs. Results: Our computational analysis confirmed the dysregulation of key retinoblastoma-associated genes. In comparison to normal retinal tissue, RB1 exhibited a 2.5-fold increase in expression (adjusted p Conclusions: Our analysis reinforces the critical genetic alterations known in retinoblastoma and unveils new avenues for research into the disease’s molecular basis. The discovery of chemoresistance markers and immune-related genes opens potential pathways for personalized treatment strategies. The study’s outcomes emphasize the power of in silico analyses in unraveling complex cancer genomics.
基金financially supported by grants from the National Natural Science Foundation of China(31471485)Natural Science Foundation of Beijing Citythe Key Developmental Project of Science and Technology from Beijing Municipal Commission of Education(KZ201410028031)
文摘Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar(Jimai 20) during grain development using the Gene Chip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis(DPA) was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves.Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and Map Man analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by q RT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.
文摘BACKGROUND DNA methylation, acknowledged as a key modification in the field of epigenetics, regulates gene expression at the transcriptional level. Aberrant methylation in DNA regulatory regions could upregulate oncogenes and downregulate tumor suppressor genes without changing the sequences.However, studies of methylation in the control of gene expression are still inadequate. In the present research, we performed bioinformatics analysis to clarify the function of methylation and supply candidate methylation-related biomarkers and drivers for colon cancer.AIM To identify and analyze methylation-regulated differentially expressed genes(MeDEGs) in colon cancer by bioinformatics analysis.METHODS We downloaded RNA expression profiles, Illumina Human Methylation 450 K BeadChip data, and clinical data of colon cancer from The Cancer Genome Atlas project. MeDEGs were identified by analyzing the gene expression and methylation levels using the edgeR and limma package in R software. Gene ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were performed in the DAVID database and KEGG Orthology-Based Annotation System 3.0, respectively. We then conducted Kaplan–Meier survival analysis to explore the relationship between methylation and expression and prognosis. Gene set enrichment analysis(GSEA) and investigation of protein-protein interactions(PPI) were performed to clarify the function of prognosis-related genes.RESULTS A total of 5 up-regulated and 81 down-regulated genes were identified asMeDEGs. GO and KEGG pathway analyses indicated that MeDEGs were enriched in multiple cancer-related terms. Furthermore, Kaplan–Meier survival analysis showed that the prognosis was negatively associated with the methylation status of glial cell-derived neurotrophic factor(GDNF) and reelin(RELN). In PPI networks, GDNF and RELN interact with neural cell adhesion molecule 1. Besides, GDNF can interact with GDNF family receptor alpha(GFRA1), GFRA2, GFRA3, and RET. RELN can interact with RAFAH1 B1,disabled homolog 1, very low-density lipoprotein receptor, lipoprotein receptorrelated protein 8, and NMDA 2 B. Based on GSEA, hypermethylation of GDNF and RELN were both significantly associated with pathways including "RNA degradation," "ribosome," "mismatch repair," "cell cycle" and "base excision repair."CONCLUSION Aberrant DNA methylation plays an important role in colon cancer progression.MeDEGs that are associated with the overall survival of patients may be potential targets in tumor diagnosis and treatment.
基金funded by the Fundamental Research Funds for the Central Universities(BLYJ201517)the Program for New Century Excellent Talents in University by the Ministry of Education,China(NCET-10-0223)
文摘Blooming date is an important trait in fruit tree species.Although several quantitative trait loci confirming blooming date were identified in Prunus spp.,the molecular mechanism underlying it remains unclear.Arising from this,the transcriptomes of normal blooming and lateblooming Siberian apricot(P.sibirica L.)flower buds were analyzed using RNA-seq technology.A total of 68,855 unigenes were de novo assembled,among which 1204 were differentially expressed between normal and late blooming.Gene ontology enrichment analysis revealed that biological processes were enriched with metabolic processes.The catalytic-related gene transcripts between the two types of blooming were significantly changed in the molecular function.Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that 156 genes were successfully annotated and 75 pathways enriched.Genes for gibberellin biosynthesis were up-regulated in normal blooming,whereas abscisic acid degradation-related genes were also up-regulated in normal blooming.Moreover,circadian rhythms related genes including EARLY FLOWERING 4,LATE ELONGATED HYPOCOTYL and CIRCANDIAN CLOCK ASSOCIATED1 were all up-regulated in normal blooming,indicating that circadian rhythms have a very important role in controlling blooming date.Furthermore,zinc finger protein CONSTANS-LIKE 12 was blasted onto the quantitative trait loci region on linkage group 4 in peach.However,changes in the abundance of key flowering genes such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1,FLOWERING LOCU T,LEAFY and FLOWERING LOCUS C were not significantly different,indicating that further investigation should explore the function of these genes on blooming date.The outcomes of this study will provide a valuable platform for further research on the molecular mechanism of blooming date in Prunus.
基金supported by the Natural Science Foundation of Shaanxi Province of China,No.2018JQ8029(to LG)
文摘Gene spectrum analysis has shown that gene expression and signaling pathways change dramatically after spinal cord injury,which may affect the microenvironment of the damaged site.Microarray analysis provides a new opportunity for investigating diagnosis,treatment,and prognosis of spinal cord injury.However,differentially expressed genes are not consistent among studies,and many key genes and signaling pathways have not yet been accurately studied.GSE5296 was retrieved from the Gene Expression Omnibus DataSet.Differentially expressed genes were obtained using R/Bioconductor software(expression changed at least two-fold;P < 0.05).Database for Annotation,Visualization and Integrated Discovery was used for functional annotation of differentially expressed genes and Animal Transcription Factor Database for predicting potential transcription factors.The resulting transcription regulatory protein interaction network was mapped to screen representative genes and investigate their diagnostic and therapeutic value for disease.In total,this study identified 109 genes that were upregulated and 30 that were downregulated at 0.5,4,and 24 hours,and 3,7,and 28 days after spinal cord injury.The number of downregulated genes was smaller than the number of upregulated genes at each time point.Database for Annotation,Visualization and Integrated Discovery analysis found that many inflammation-related pathways were upregulated in injured spinal cord.Additionally,expression levels of these inflammation-related genes were maintained for at least 28 days.Moreover,399 regulation modes and 77 nodes were shown in the protein-protein interaction network of upregulated differentially expressed genes.Among the 10 upregulated differentially expressed genes with the highest degrees of distribution,six genes were transcription factors.Among these transcription factors,ATF3 showed the greatest change.ATF3 was upregulated within 30 minutes,and its expression levels remained high at28 days after spinal cord injury.These key genes screened by bioinformatics tools can be used as biological markers to diagnose diseases and provide a reference for identifying therapeutic targets.
基金supported by Grants from the National Natural Science Foundation of China(81801643)the National Key Program for Infectious Disease of China(2018ZX10731301–005)+1 种基金Beijing Municipal Science&Technology Commission(Z181100001718005)the Medical Science and Technology Youth Cultivation Program of PLA(16QNP075)。
文摘Background:Tuberculosis is a leading cause of death worldwide.BCG is an effective vaccine,but not widely used in many parts of the world due to a variety of issues.Mycobacterium vaccae(M.vaccae)is another vaccine used in human subjects to prevent tuberculosis.In the current study,we investigated the potential mechanisms of M.vaccae vaccination by determining differentially expressed genes in mice infected with M.tuberculosis before and after M.vaccae vaccination.Methods:Three days after exposure to M.tuberculosis H37 Rv strain(5×10~5 CFU),adult BALB/c mice randomly received either M.vaccae vaccine(22.5μg)or vehicle via intramuscular injection(n=8).Booster immunization was conducted 14 and 28 days after the primary immunization.Differentially expressed genes were identified by microarray followed by standard bioinformatics analysis.Results:M.vaccae vaccination provided protection against M.tuberculosis infection(most prominent in the lungs).We identified 2,326 upregulated and 2,221 downregulated genes in vaccinated mice.These changes could be mapped to a total of 123 signaling pathways(68 upregulated and 55 downregulated).Further analysis pinpointed to the MyD88-dependent TLR signaling pathway and PI3 K-Akt signaling pathway as most likely to be functional.Conclusions:M.vaccae vaccine provided good protection in mice against M.tuberculosis infection,via a highly complex set of molecular changes.Our findings may provide clue to guide development of more effective vaccine against tuberculosis.
文摘One of the impediments in the genetic improvement of cotton fiber is the paucity of information about genes associated with fiber development.Availability of chromosome arm substitution line CS-
基金This study was supported by the National Natural Science Foundation of China,No.31571236(to YHK)Science and Technology Planning Project of Beijing of China,No D161100002816001+1 种基金the National Key Research and Development Program of China,No.2016YFC1101604(to DYZ)the Ministry of Education Innovation Program of China,No.IRT_16R01.
文摘Complex pathological changes occur during the development of spinal cord injury(SCI),and determining the underlying molecular events that occur during SCI is necessary for the development of promising molecular targets and therapeutic strategies.This study was designed to explore differentially expressed genes(DEGs)associated with the acute and chronic stages of SCI using bioinformatics analysis.Gene expression profiles(GSE45006,GSE93249,and GSE45550)were downloaded from the Gene Expression Omnibus database.SCI-associated DEGs from rat samples were identified,and Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed.In addition,a protein-protein interaction network was constructed.Approximately 66 DEGs were identified in GSE45550 between 3–14 days after SCI,whereas 2418 DEGs were identified in GSE450061–56 days after SCI.Moreover,1263,195,and 75 overlapping DEGs were identified between these two expression profiles,3,7/8,and 14 days after SCI,respectively.Additionally,16 overlapping DEGs were obtained in GSE450061–14 days after SCI,including Pank1,Hn1,Tmem150c,Rgd1309676,Lpl,Mdh1,Nnt,Loc100912219,Large1,Baiap2,Slc24a2,Fundc2,Mrps14,Slc16a7,Obfc1,and Alpk3.Importantly,3882 overlapping DEGs were identified in GSE932491–6 months after SCI,including 3316 protein-coding genes and 567 long non-coding RNA genes.A comparative analysis between GSE93249 and GSE45006 resulted in the enrichment of 1135 overlapping DEGs.The significant functions of these 1135 genes were correlated with the response to the immune effector process,the innate immune response,and cytokine production.Moreover,the biological processes and KEGG pathways of the overlapping DEGs were significantly enriched in immune system-related pathways,osteoclast differentiation,the nuclear factor-κB signaling pathway,and the chemokine signaling pathway.Finally,an analysis of the overlapping DEGs associated with both acute and chronic SCI,assessed using the expression profiles GSE93249 and GSE45006,identified four overlapping DEGs:Slc16a7,Alpk3,Lpl and Nnt.These findings may be useful for revealing the biological processes associated with SCI and the development of targeted intervention strategies.
基金supported by the National Natural Science Foundation of China(30960159)the Specialized Research Foundation for the Doctoral Program of Higher Education(200801260002)
文摘Melon (Cucumis melo L.) is an important horticultural crop worldwide. Ethylene regulates the ripening process and affects the ripening rate. To screen genes that are differentially expressed at the burst of ethylene climacteric in melon fruit, we performed suppression subtractive hybridization (SSH) to generate forward and reverse libraries, for which we sequenced 439 and 445 clones, respectively. Our BLAST analysis showed that the genes from the 2 libraries were involved in metabolism, signal transduction, cell structure, transcription, translation, and defense. Six genes were analyzed by qRT-PCR during the differential developmental stage of melon fruit. Our results provide new insight into the understanding of climacteric ripening of melon fruit.
基金sponsored by the Yunnan Natural Science Foundation,China(2009CD056)the National Natural Science foundation of China(30660132,31060331 and 31260592)+1 种基金the Special Program for Key Basic Research of the Ministry of Science and Technology,China(2007CB116201)the National Key Program of Transgenic Project of China(2009ZX08009-140B)
文摘The biological chemistry would be responsible for the meat quality. This study tried to investigate the transcript expression profile and explain the characteristics of differentially expressed genes between the Wujin and Landrace pigs. The results showed that 526 differentially expressed genes were found by comparing the transcript expression profile of muscle tissue between Wujin and Landrace pigs. Among them, 335 genes showed up-regulations and 191 genes showed down-regulations in Wujin pigs compared with the Landrace pigs. Gene ontology (GO) analysis indicated that the differentially expressed genes were clustered into three groups involving in protein synthesis, energy metabolism and immune response. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis found that these differentially expressed genes participated in protein synthesis metabolism, energy metabolism and immune response pathway. The Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis of protein function and protein domains function also confirmed that differentially expressed genes belonged to protein synthesis, energy metabolism and immune response. Genes related protein synthesis metabolism pathway in Landrace was higher than in Wujin pigs. However, differentially expressed genes related energy metabolism and immune response was up-regulated in Wujin pigs compared with Landrace pigs. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray. These suggested that the genes related to protein synthesis, energy metabolism and immune response would contribute to the growth performance, meat quality as well as anti-disease capacity.
基金Project(31260476)supported by the National Natural Science Foundation of China
文摘In order to screen the genes controlling watermelon rind color and luster, the experiment was carried out with yellow watermelon skin mutants as tester and green wild type watermelon as control, and transcriptome sequencing and bioinformatics analysis were done. The results show that 34.27 Gb clean data were got by transcriptome sequencing. There are 261 differentially expressed genes among Y_1_vs_G_1, Y_2_vs_G_2 and Y_3_vs_G_3. The pathways contenting most differentially expressed genes are plant hormone signal transduction pathway, phenylpropanoid biosynthesis pathway, photosynthesis pathway, starch and sucrose metabolism pathway. 9-cis-epoxycarotenoid dioxygenase(Cla002942), alcohol dehydrogenase(Cla004992), photosystem Ⅰ reaction center subunit Ⅲ, chloroplastic(precursor)(Cla009181), long-chain acyl coenzyme A synthetase(Cla017341), threonine dehydratase biosynthetic(Cla018352) candidates genes were screened out.
文摘Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe, mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip.The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5〉3.5 meant significant up-regulation. Cy3/Cy5〈0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.
基金supported by a grant from the National High-tech Research & Development Program(No.2011AA030101)
文摘Summary: This study aimed to identify the differentially expressed genes after silencing of β-catenin in multiple myeloma transduced with β-catenin shRNA. The DNA microarray dataset GSE17385 was downloaded from Gene Expression Omnibus, including 3 samples of MM1.S (human multiple mye- loma cell lines) cells transduced with control shRNA and 3 samples of MM1.S cells transduced with β-catenin shRNA. Then the differentially expressed genes (DEGs) were screened by using Limma. Their underlying functions were analyzed by employing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Moreover, DEGs annotation was conducted based on the databases of tumor associated genes, tumor suppressed genes and the transcriptional regulation from patterns to profiles. Furthermore, the protein-protein interaction (PPI) relationship was obtained from STRING and the protein-protein interaction network and the functional modules were visual- ized by Cytoscape. Then, the pathway enrichment for the DEGs in the functional module was per- formed. A total of 301 DEGs, including 124 up-regulated and 117 down-regulated DEGs, were screened. Functional enrichment showed that CCNB1 and CDK1 were significantly related to the function of cell proliferation. FOS and JUN were related to innate immune response-activating signal transduction. Pathway enrichment analysis indicated that CCNB 1 and CDK1 were most significantly enriched in the pathway of cell cycle. Besides, FOS and JUN were significantly enriched in the Toll-like receptor signaling pathway. FOXM1 was identified as a transcription factor. Moreover, there existed interactions among CCNB1, FOXM1 and CDK1 in PPI network. The expression of FOS, JUN, CCNB1, FOXM1 and CDK1 may be affected by β-catenin in multiple myeloma.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province,No.KYCX-2065(to XMC).
文摘The initial mechanical damage of a spinal cord injury(SCI)triggers a progressive secondary injury cascade,which is a complicated process integrating multiple systems and cells.It is crucial to explore the molecular and biological process alterations that occur after SCI for therapy development.The differences between the rostral and caudal regions around an SCI lesion have received little attention.Here,we analyzed the differentially expressed genes between rostral and caudal sites after injury to determine the biological processes in these two segments after SCI.We identified a set of differentially expressed genes,including Col3a1,Col1a1,Dcn,Fn1,Kcnk3,and Nrg1,between rostral and caudal regions at different time points following SCI.Functional enrichment analysis indicated that these genes were involved in response to mechanical stimulus,blood vessel development,and brain development.We then chose Col3a1,Col1a1,Dcn,Fn1,Kcnk3,and Nrg1 for quantitative real-time PCR and Fn1 for immunostaining validation.Our results indicate alterations in different biological events enriched in the rostral and caudal lesion areas,providing new insights into the pathology of SCI.
文摘A cDNA subtractive library enriched for dark-induced up-regulated ESTs was constructed by suppression subtractive hybridization(SSH) from leaf tissues of soybean cultivar DongNong L13 treated with short-day(8-h light/16-h dark) and long-day(16-h light/8-h dark) conditions.A total of 148 clones were sequenced,representing 76 unique ESTs which corresponded to about 20% of 738 clones from the cDNA library and showed a significant up-regulation of at least three fold verified by dot blot hybridization.The putative functions of ESTs were predicted by Blastn and Blastx.The 43 differentially expressed genes identified by subtractions were classified according to their putative functions generated by Blast analysis.Genetic functional analysis indicated that putative proteins encoded by these genes were related to diverse functions during organism development,which include biological regulation pathways such as transcription,signal transduction and programmed cell death,protein,nucleic acid and carbohydrate macromolecule degradation,the cell wall modification,primary and secondary metabolism and stress response.Two soybean transcription factors enhanced in SD conditions,GAMYB-binding protein and DNA binding protein RAV cDNAs that may be involved in SD soybean photoperiod response,had been isolated using 5'-and 3'-rapid amplification of cDNA ends(RACE)(Genbank Accession numbers DQ112540 and DQ147914).