-
题名升温速率及氧浓度对长焰煤煤氧复合过程特性的影响
被引量:10
- 1
-
-
作者
邵玥
尤飞
尤明伟
徐雅清
-
机构
南京工业大学城市建设与安全工程学院
辽宁工程技术大学矿山热动力灾害与防治教育部重点实验室
南京工业大学火灾与消防工程研究所
福建漳浦消防支队
-
出处
《安全与环境学报》
CAS
CSCD
北大核心
2016年第5期177-181,共5页
-
基金
国家自然科学基金项目(51376089)
辽宁工程技术大学矿山热动力灾害与防治教育部重点实验室资助课题
-
文摘
利用热重试验对粒径小于0.2 mm的长焰煤煤粉进行了不同氧体积分数(21%、40%、50%、60%和80%)和升温速率(20℃/min、30℃/min、40℃/min、50℃/min和60℃/min)的25种工况下煤氧复合过程中热解特性的测定,分析了两种因素对各特征值的影响。结果表明:以热失重速率为基准,长焰煤在含氧气氛下的热解过程可分为失水失重阶段、氧化增重阶段及着火、燃烧和炭化3个阶段;通用着火特性指标越大,煤样燃烧特性越好,自燃点越小,煤样工业分析结果应与其实际生产过程中的自燃危险性相结合;升温速率不变时自燃点随氧体积分数上升而下降,而煤氧复合时间随氧体积分数上升呈现先降低再微弱增加的趋势;氧体积分数一定时自燃点随升温速率上升而上升,煤氧复合时间则随之下降。对自燃点及煤氧复合时间进行均值无量纲化,并将其与无量纲化升温速率进行拟合,决定系数(R^2)约为1.0;提出了煤氧复合难易程度参数(D),计算结果表明,即使自燃点随升温速率上升发生滞后,煤氧复合难度仍然减弱。
-
关键词
安全工程
长焰煤
氧浓度
升温速率
自燃点
煤氧复合时间
无量纲化
难易程度参数
-
Keywords
safety engineering
long-flame coal
oxygen content
heating rate
self-ignition point
coal-oxidation time
non-dimensionalize
difficult level parameter(d)
-
分类号
X915.5
[环境科学与工程—安全科学]
-
-
题名用高分辨率层序地层学进行非构造圈闭研究
被引量:1
- 2
-
-
作者
刘豪
王英民
王媛
张哨楠
雷开强
-
机构
石油大学盆地中心
成都理工学院石油系
-
出处
《西安石油学院学报(自然科学版)》
CAS
2001年第6期1-4,共4页
-
文摘
在建立起区域层序地层格架的基础之上 ,以高分辨率层序地层学为主线 ,以三维高分辨率地震、岩心和测井资料为基础 ,以高频基准面旋回的识别和对比为关键 ,从各种地质因素上对高频层序的形成机理和相域的演化规律进行研究 ,结合地震参数提取、井间约束反演和其他数学方法等手段 ,对高频层序内部骨架砂体作平面和三维空间展布 ,为非构造圈闭的最终确定和进一步精细油藏描述提供可靠的依据 .以某盆地某坳陷渐新世晚期珠海组二段地层为例 ,共划分了 7个准层序组 ,其中在准层序组 PSS6 ,PSS7中共识别出 5个不同规模的非构造圈闭 。
-
关键词
高分辨率层序地层学
基准面
非构造圈闭
一维地震
参数提取
油气地质
-
Keywords
high resolution sequence stratigraphy, basic level, atectonic trap, 3 d seism , parameter drawing
-
分类号
P618.130.2
[天文地球—矿床学]
P539.2
[天文地球—古生物学与地层学]
-
-
题名表面等离子体无掩膜干涉光刻系统的数值分析(英文)
被引量:5
- 3
-
-
作者
董启明
郭小伟
-
机构
电子科技大学光电信息学院
-
出处
《光子学报》
EI
CAS
CSCD
北大核心
2012年第5期558-564,共7页
-
基金
The National Natural Science Foundation of China(No.60906052)
-
文摘
表面等离子体激元具有近场增强效应,可以代替光子作为曝光源形成纳米级特征尺寸的图像.本文数值分析了棱镜辅助表面等离子体干涉系统的参量空间,并给出了计算原理和方法.结果表明,适当地选择高折射率棱镜、低银层厚度、入射波长和光刻胶折射率,可以获得高曝光度、高对比度的干涉图像.入射波长为431nm时,选择40nm厚的银层,曝光深度可达200nm,条纹周期为110nm.数值分析结果为实验的安排提供了理论支持.
-
关键词
干涉光刻
表面等离子体激元
克莱舒曼结构
-
Keywords
Interference lithography
Surface plasmon plortiton
Kretschmann structureCLCN: TN305.7 document Code:A Article Id:1004-4213(2012)05-0558-70 IntroductionThere is a growing interest in exploring new nanolithography techniques with high efficiency,low cost and large-area fabrication to fabricate nanoscale devices for nanotechnology applications.Conventional photolithography has remained a useful microfabrication technology because of its ease of repetition and suitability for large-area fabrication[1].The diffraction limit,however,restricts the fabrication scale of photolithography[2].Potential solutions that have actually been pursued require increasingly shorter illumination wavelengths for replicating smaller structures.It is becoming more difficult and complicated to use the short optical wavelengths to reach the desired feature sizes.Other methods such as electron beam lithography[3],ion beam lithography[4],scanning probe lithography[5],nanoimprint lithography(NIL)[6],and evanescent near-field optical lithography(ENFOL)[7] have been developed in order to achieve nanometer-scale features.As we know,the former three techniques need scanning and accordingly are highly inefficient.In NIL,the leveling of the imprint template and the substrate during the printing process,which determines the uniformity of the imprint result,is a challenging issue of this method.ENFOL have the potential to produce subwavelength structures with high efficiency,but it encounters the fact that the evanescent field decays rapidly through the aperture,thus attenuating the transmission intensity at the exit plane and limiting the exposure distance to the scale of a few tens of nanometers from the mask.In recent years,the use of surface-plasmon polaritons(SPPs) instead of photons as an exposure source was rapidly developed to fabricate nanoscale structures.SPPs are characterized by its near field enhancement so that SPP-based lithography can greatly extend exposure depth and improve pattern contrast.Grating-assisted SPP interference,such as SPP resonant interference nanolithography[8] and SPP-assisted interference nanolithography[9],achieved a sub-100nm interference pattern.The techniques,however,are necessary to fabricate a metal grating with a very fine period and only suitable for small-area interference.To avoid the fabrication of the metal grating,a prism-based SPP maskless interference lithography was proposed in 2006,which promises good lithography performance.The approach offers potential to achieve sub-65nm and even sub-32nm feature sizes.However,the structure parameters are always not ideal in a real system.One wants to know how much influence the parameter variations have on the pattern resolution and what variations of the parameters are allowed to obtain an effective interference.Thus,it is necessary to explore the parameter spaces.1 SPP maskless interference lithography systemThe SPP maskless interference lithography system is shown in Fig.1.A p-polarized laser is divided into two beams by a grating splitter,and then goes into the prism-based multilayer system.Under a given condition,the metal film can exhibit collective electron oscillations known as SPPs which are charge density waves that are characterized by intense electromagnetic fields confined to the metallic surface.If the metal layer Fig.1 Schematic for SPP maskless interference lithography systemis sufficiently thin,plasma waves at both metal interfaces are coupled,resulting in symmetric and antisymmetric SPPs.When the thickness h of metal film,dielectric constant ε1,ε2,ε3 of medium above,inside,below the metal film are specified,the coupling equation is shown as followstanh(S2h)(ε1ε3S22+ε22S1S3)+(ε1ε2S2S3+ε2ε3S1S2)=0
-
分类号
TN305.7
[电子电信—物理电子学]
-