This paper presents the performance results of a 366-day pilot-scale submerged membrane bioreactor (SMBR) for treating high-strength pharmaceutical wastewater. The study focuses on the growth properties of mixed liquo...This paper presents the performance results of a 366-day pilot-scale submerged membrane bioreactor (SMBR) for treating high-strength pharmaceutical wastewater. The study focuses on the growth properties of mixed liquor suspended solids (MLSS) in SMBR operated at high volumetric loading rates. The influences of MLSS on COD removal,sludge yield,oxygen utilization rates and sludge viscosity are studied. Results show that the bioreactor can be operated at higher volumetric loading rate with a low sludge yield. VSS/SS and observed sludge yield coefficient (Yo) present a decreasing trend with the decrease of hydraulic retention time (HRT) . Sludge oxygen utilization rate decreases with the increase of mixed liquor volatile suspended solids (MLVSS) . A mathematical model between sludge viscosity and MLSS is developed.展开更多
A total of 14 halophilic hydrocarbon-degrading strains were isolated from crude oil-contaminated sites,using petroleum as the sole carbon and energy source.Among these,four highly efficient strains were selected to cr...A total of 14 halophilic hydrocarbon-degrading strains were isolated from crude oil-contaminated sites,using petroleum as the sole carbon and energy source.Among these,four highly efficient strains were selected to create the mixed bacterial agent XH-1.These four strains were identified through 16S rRNA gene-based sequencing as belonging to Acinetobacter,Bacillus paramycoides,Rhodococcus sp.,and Enterobacter sp.,respectively.The optimal cultivation time for the mixed consortium XH-1 was found to be 48 h,and a nitrogen-phosphorus molar ratio of 10:1 was determined to be beneficial for crude oil degradation.XH-1 showed notable crude oil degradation even at a salinity of up to 30 g/L,with little inhibition observed at sulfide concentrations as high as 150 mg/L and initial oil concentrations of 500 mg/L.Gas chromatography analysis revealed that XH-1 was able to efficiently degrade C9–C29 n-alkanes.Moreover,a bio-contact oxidation reactor enhanced by XH-1 showed promising results in treating oilfield wastewater.These findings suggest that XH-1 can be applied for the treatment of oilfield wastewater.展开更多
Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particul...Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particularly Mg-based LDHs,rank among the most prevalent two-dimensional materials utilized in separation processes,which include adsorption,extraction,and membrane technology.The high popularity of Mg-based LDHs in separation applications can be attributed to their properties,such as excellent hydrophilicity,high surface area,ion exchangeability,and adjustable interlayer space.Currently,polymer membranes play a pivotal role in semi-industrial and industrial separation processes.Consequently,the development of polymer membranes and the mitigation of their limitations have emerged as compelling topics for researchers.Several methods exist to enhance the separation performance and anti-fouling properties of polymer membranes.Among these,incorporating additives into the membrane polymer matrix stands out as a cost-effective,straightforward,readily available,and efficient approach.The use of Mg-based LDHs,either in combination with other materials or as a standalone additive in the polymer membrane matrix,represents a promising strategy to bolster the separation and anti-fouling efficacy of flat sheet mixed matrix polymer membranes.This review highlights Mg-based LDHs as high-potential additives designed to refine flat sheet mixed matrix polymer membranes for applications in wastewater treatment and brackish water desalination.展开更多
Molasses wastewater was evaluated as substrate for biohydrogen production by anaerobic fermentation in a novel continuous mixed attached growth reactor ( CMAGR ) with aeration pretreated sludge attached onto granular ...Molasses wastewater was evaluated as substrate for biohydrogen production by anaerobic fermentation in a novel continuous mixed attached growth reactor ( CMAGR ) with aeration pretreated sludge attached onto granular activated carbon under continuous flow condition.It was indicated that the CMAGR system was operated at the conditions of influent COD of 2000~6000mg / L , hydraulic retention time ( HRT ) of 6hand temperature of 35 ℃ , when the pH value and oxidation-reduction potential ( ORP ) ranged from 4.16and-434 mV respectively , stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 89.3%to the total liquid products after 40days operation.The H 2 content in biogas and chemical oxygen demand ( COD ) removal were estimated to be 46.6% and 13% , respectively.It was also investigated that the effects of organic loading rates ( OLRs ) on CMAGR hydrogen production system.It was found that hydrogen production yield increased from 3.72 mmol / hL to 12.51 mmol / hL as OLRs increased from 8 kg / m 3 d to 32 kg / m 3 d.The maximum hydrogen production rate of 12.51mmol / hL at a OLR of 32kg / m 3 d and the maximum hydrogen yield by substrate consumed was 130.57 mmol / mol happened at OLR of 16 kg / m 3 d.Greater pHs appeared to be favour to butyrate production and the maximum of 0.51mol / mol was obtained at pH of 4.14.However , ethanol / acetate ratio was greater than 1.1at pH fluctuated between 3.4 - 3.6and 4.1 - 4.4which indicated that these pHs were favour to ethanol type fermentation.Therefore , the continuous mixed attached growth reactor ( CMAGR ) could be a promising attached growth system for biohydrogen fermentation.展开更多
The efficiency of a wastewater treatment system is classically measured by the quality of its discharge into the aquatic environment. This quality can only be achieved if certain aspects are taken into account, such a...The efficiency of a wastewater treatment system is classically measured by the quality of its discharge into the aquatic environment. This quality can only be achieved if certain aspects are taken into account, such as the design and operation of the system in place. The objective of the present work is to evaluate the purification performance of this system after 17 years of operation. It should be noted that the lagoon plant (WWTP) has a total of eight basins, three of which are anaerobic (ANA). The evaluation of the physicochemical and microbiological parameters in the anaerobic basins and in the maturation basins allowed us to note slightly basic pH values in the maturation basins (8.7 to 9.2) against values from 6.8 to 7.4 in the anaerobic basins. Also, the values in terms of organic and bacteriological pollution have also evolved. For COD and BOD<sub>5</sub>, we obtained respectively abatements of more than 73% for filtered COD, 55% for gross COD and 81% for BOD<sub>5</sub> even if the residual concentrations do not respect the standards of wastewater discharge in our country. Also, the residual concentrations of ammonia nitrogen in the output effluents (on average 12.43 mg/L), do not meet the standard of discharge into surface waters of Burkina Faso (1.29 mg/L). Thus, nutrients such as nitrogen and phosphorus pollution have average abatement rates of 31% and 27% respectively. In sum, we can say that the lagoon system set up does not meet the requirements in terms of quality of discharges, which remains an environmental problem for the receiving environment.展开更多
A pilot scale test was conducted in a submerged membrane bioreactor SMBR with capacity of 10. 0 m^3/d for 120 days to treat high-strength Chinese traditional medicine wastewater. Performance of the SMBR was investigat...A pilot scale test was conducted in a submerged membrane bioreactor SMBR with capacity of 10. 0 m^3/d for 120 days to treat high-strength Chinese traditional medicine wastewater. Performance of the SMBR was investigated with a sludge retention time ( TSR ) of 50 days, a hydraulic retention time ( THR ) of 8.0 h, membrane flux of 8. 0 IV( m^2 · h) and dissolved oxygen (DO) concentration of 2. 0 - 3. 0 mg/L, respectively. It was observed that the SMBR had high capacity of COD and suspended solid (SS) removal. The influent COD concentration was fluctuated between I 000 and 5 000 mg/L, while the averaged effluent COl) concentration was only 44. 6 mg/L. The influent SS concentration was fluctuated between 1 000 and 1 600 mg/L, while little effluent SS was detected. It was found that the COD remove rate increased with mixed liquor suspended solids (MLSS) and organic loading rate (ROL). In order to obtain good-quality effluent, the operational conditions of the SMBR were suggested as follows: the temperature was controlled above 10 ℃, MLSS about 7000 mg/L, R,L under 24. 76 kg/( m^3 · d), low vacuum value and constant water flux.展开更多
The purpose of this work is to study the co-cultivation of Chlorella sp. and wastewater wild algae under different cultivation conditions (i.e. CO2, light intensity, cultivation time, and inoculation ratio) for enha...The purpose of this work is to study the co-cultivation of Chlorella sp. and wastewater wild algae under different cultivation conditions (i.e. CO2, light intensity, cultivation time, and inoculation ratio) for enhanced algal biomass and lipid productivity in wastewater medium using Response SuHhce Methodology (RSM). The results show that mixed cultures ofd7llorella sp. and wastewater wild algae increase biomass and lipid yield. Additionally, findings indicate that CO2, light intensity and cultivation time significantly affect algal productivity. Furthcnnore, CO2 concentration and light intensity, and CO2 concentration and algal composition, have an interactive effect on biomass productivity. Under dii"ferent cultivation conditions, the response of algal biomass, cell count, and lipid productlvlty ranges from2,5 to 10.2 mg/mL 1.1 × 10 to 8.2 × 10 cells/mL and 1.1 × 10^6 to 6.8 × 10^12 total fluorescent units/mL, respectively× The optimum conditions tbr simt, ltaneot, s biomass and lipid accumulation are 3.6% of CO2 (v/v), 160 μmol/m^2/s of light intensity, 1×6/2.4 of inoculation ratio (wastewater-algae/Chlorella), and 8.3 days of cultivation time. The optimal productivity is 9,8 (g/L) for dry biomass, 8.6 E + 08 (cells/mL) for cell count, and 6.8 E + 12 (Total FL units per mL) fbr lipid yield, achieving up to four times, eight times, and seven times higher productivity compared to non- optimized conditions. Provided is a supportive methodology to improve mixed algal culture for hioenergy feedstock generation and to optimize cultivation conditions in complex wastewater environments. This work is an important step tbrward in the development of sustainable large-scale algae cultivation for cost-efficient generation of biofuel.展开更多
The production of polyhydroxyalkanoates(PHA) from wastewaters using microbial mixed cultures(MMC) has been attracting increased interest because of PHA's biodegradability characteristics. Production of PHA by an M...The production of polyhydroxyalkanoates(PHA) from wastewaters using microbial mixed cultures(MMC) has been attracting increased interest because of PHA's biodegradability characteristics. Production of PHA by an MMC enriched with PHA-accumulating bacteria was compared using anaerobically treated and acidified brewery wastewaters under various feeding strategies, namely pulse and batch feed addition. To obtain an enriched MMC, a sequencing batch reactor was inoculated with activated sludge fed with acetate and subjected to aerobic dynamic feeding. The enriched MMC was able to accumulate PHA up to 72.6% of cell dry weight(CDW) with pulse addition of acetate controlled by the dissolved oxygen(DO) concentration in the reactor. In a batch accumulation experiment with acetate,the PHA content achieved(28.5% CDW) was less than that of the pulse feeding strategy with the same amount of acetate(~2000 mg C/L). Using anaerobically treated and acidified brewery wastewater fed in pulses, the maximum PHA accumulated by the enriched MMC was similar for both wastewaters(45% CDW), in spite of the higher volatile fatty acid concentration in acidified brewery wastewater. The pulse feed addition controlled by the DO concentration was difficult to implement for wastewater as compared to acetate because the difference in DO concentration between substrate availability and depletion was low. For the batch addition of acidified wastewater, a slightly lower PHA content(39%CDW) was obtained. These results show that both brewery wastewaters can be utilized for PHA production with a similar maximum PHA storage capacity.展开更多
In wastewater treatment plants(WWTPs),microplastics(MPs)are complex,especially with mixed domestic–industrial influents.Conventional random grab sampling can roughly depict the distribution and characteristics of MPs...In wastewater treatment plants(WWTPs),microplastics(MPs)are complex,especially with mixed domestic–industrial influents.Conventional random grab sampling can roughly depict the distribution and characteristics of MPs but can not accurately reflect their daily fluctuations.In this study,the concentration,shape,polymer type,size,and color of MPs were analyzed by micro-Raman spectroscopy(detection limit of 0.05 mm)throughout treatment stages of three mixed domestic–industrial WWTPs(W1,W2,and W3)in Wuxi City,China,and the daily fluctuations of MPs were also obtained by dense grab sampling within 24 h.For influent samples,the average MP concentration of 392.2 items/L in W1 with 10%industrial wastewater was much higher than those in W2(71.2 items/L with 10%industrial wastewater)and W3(38.3 items/L with 60%industrial wastewater).White polyethylene granules with a diameter less than 0.5 mm from plastic manufacturing were the most dominant MPs in the influent of W1,proving the key role of industrial sources in MPs pollution.In addition,the daily dense sampling results showed that MP concentration in W1 influent fluctuated widely between 29.1 items/L and 4617.6 items/L within a day.Finally,few MPs(less than 4.0 items/L)in these WWTPs effluents were attributed to the effective removal of wastewater treatment processes.Thus,further attention should be paid to regulating the primary sources of MPs.展开更多
Advanced oxidation processes have been widely studied for organic pollutants treatment in water,but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the ani...Advanced oxidation processes have been widely studied for organic pollutants treatment in water,but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the anions and radicals,especially in high salinity conditions.Here,a singlet oxygen(^(1)O_(2))-dominated non-radical process was developed for organic pollutants degradation in high salinity wastewater,with layered crednerite(CuMnO_(2))as catalysts and peroxymonosulfate(PMS)as oxidant.Based on the experiments and density functional theory calculations,^(1)O_(2)was the dominating reactive species and the constructed Cu-O-Mn with electron-deficient Mn captured electron from PMS promoting the generation of^(1)O_(2).The rapid degradation of bisphenol A(BPA)was achieved by CuMnO_(2)/PMS system,which was 5-fold and 21-fold higher than that in Mn_(2)O_(3)/PMS system and Cu_(2)O/PMS system.The CuMnO_(2)/PMS system shown prominent BPA removal performance under high salinity conditions,prominent PMS utilization efficiency,outstanding total organic carbon removal rate,wide range of applicable pH and good stability.This work unveiled that the^(1)O_(2)-dominated non-radical process of CuMnO_(2)/PMS system overcame the inhibitory effect of anions in high salinity conditions,which provided a promising technique to remove organic pollutants from high saline wastewater.展开更多
基金Sponsored by the Natural Science Foundation of Heilongjiang Province(Grant No.e2007-04)
文摘This paper presents the performance results of a 366-day pilot-scale submerged membrane bioreactor (SMBR) for treating high-strength pharmaceutical wastewater. The study focuses on the growth properties of mixed liquor suspended solids (MLSS) in SMBR operated at high volumetric loading rates. The influences of MLSS on COD removal,sludge yield,oxygen utilization rates and sludge viscosity are studied. Results show that the bioreactor can be operated at higher volumetric loading rate with a low sludge yield. VSS/SS and observed sludge yield coefficient (Yo) present a decreasing trend with the decrease of hydraulic retention time (HRT) . Sludge oxygen utilization rate decreases with the increase of mixed liquor volatile suspended solids (MLVSS) . A mathematical model between sludge viscosity and MLSS is developed.
基金the Shandong Provincial Natural Science Foundation(No.ZR2019MEE038,ZR202110260011)the Fundamental Research Funds for the Central Universities(No.19CX02038A)。
文摘A total of 14 halophilic hydrocarbon-degrading strains were isolated from crude oil-contaminated sites,using petroleum as the sole carbon and energy source.Among these,four highly efficient strains were selected to create the mixed bacterial agent XH-1.These four strains were identified through 16S rRNA gene-based sequencing as belonging to Acinetobacter,Bacillus paramycoides,Rhodococcus sp.,and Enterobacter sp.,respectively.The optimal cultivation time for the mixed consortium XH-1 was found to be 48 h,and a nitrogen-phosphorus molar ratio of 10:1 was determined to be beneficial for crude oil degradation.XH-1 showed notable crude oil degradation even at a salinity of up to 30 g/L,with little inhibition observed at sulfide concentrations as high as 150 mg/L and initial oil concentrations of 500 mg/L.Gas chromatography analysis revealed that XH-1 was able to efficiently degrade C9–C29 n-alkanes.Moreover,a bio-contact oxidation reactor enhanced by XH-1 showed promising results in treating oilfield wastewater.These findings suggest that XH-1 can be applied for the treatment of oilfield wastewater.
文摘Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particularly Mg-based LDHs,rank among the most prevalent two-dimensional materials utilized in separation processes,which include adsorption,extraction,and membrane technology.The high popularity of Mg-based LDHs in separation applications can be attributed to their properties,such as excellent hydrophilicity,high surface area,ion exchangeability,and adjustable interlayer space.Currently,polymer membranes play a pivotal role in semi-industrial and industrial separation processes.Consequently,the development of polymer membranes and the mitigation of their limitations have emerged as compelling topics for researchers.Several methods exist to enhance the separation performance and anti-fouling properties of polymer membranes.Among these,incorporating additives into the membrane polymer matrix stands out as a cost-effective,straightforward,readily available,and efficient approach.The use of Mg-based LDHs,either in combination with other materials or as a standalone additive in the polymer membrane matrix,represents a promising strategy to bolster the separation and anti-fouling efficacy of flat sheet mixed matrix polymer membranes.This review highlights Mg-based LDHs as high-potential additives designed to refine flat sheet mixed matrix polymer membranes for applications in wastewater treatment and brackish water desalination.
基金support from the National Hi-Tech R&D Program(863 Program)Ministry of Science & Technology,China(2006AA05Z109)+2 种基金Shanghai Science and Technology Bureau(071605122)Shanghai Education Committee(07ZZ156)GRAP09,Northeast Forestry University are gratefully acknowledged
文摘Molasses wastewater was evaluated as substrate for biohydrogen production by anaerobic fermentation in a novel continuous mixed attached growth reactor ( CMAGR ) with aeration pretreated sludge attached onto granular activated carbon under continuous flow condition.It was indicated that the CMAGR system was operated at the conditions of influent COD of 2000~6000mg / L , hydraulic retention time ( HRT ) of 6hand temperature of 35 ℃ , when the pH value and oxidation-reduction potential ( ORP ) ranged from 4.16and-434 mV respectively , stable ethanol-type fermentation was formed with the sum of ethanol and acetate concentration ratio of 89.3%to the total liquid products after 40days operation.The H 2 content in biogas and chemical oxygen demand ( COD ) removal were estimated to be 46.6% and 13% , respectively.It was also investigated that the effects of organic loading rates ( OLRs ) on CMAGR hydrogen production system.It was found that hydrogen production yield increased from 3.72 mmol / hL to 12.51 mmol / hL as OLRs increased from 8 kg / m 3 d to 32 kg / m 3 d.The maximum hydrogen production rate of 12.51mmol / hL at a OLR of 32kg / m 3 d and the maximum hydrogen yield by substrate consumed was 130.57 mmol / mol happened at OLR of 16 kg / m 3 d.Greater pHs appeared to be favour to butyrate production and the maximum of 0.51mol / mol was obtained at pH of 4.14.However , ethanol / acetate ratio was greater than 1.1at pH fluctuated between 3.4 - 3.6and 4.1 - 4.4which indicated that these pHs were favour to ethanol type fermentation.Therefore , the continuous mixed attached growth reactor ( CMAGR ) could be a promising attached growth system for biohydrogen fermentation.
文摘The efficiency of a wastewater treatment system is classically measured by the quality of its discharge into the aquatic environment. This quality can only be achieved if certain aspects are taken into account, such as the design and operation of the system in place. The objective of the present work is to evaluate the purification performance of this system after 17 years of operation. It should be noted that the lagoon plant (WWTP) has a total of eight basins, three of which are anaerobic (ANA). The evaluation of the physicochemical and microbiological parameters in the anaerobic basins and in the maturation basins allowed us to note slightly basic pH values in the maturation basins (8.7 to 9.2) against values from 6.8 to 7.4 in the anaerobic basins. Also, the values in terms of organic and bacteriological pollution have also evolved. For COD and BOD<sub>5</sub>, we obtained respectively abatements of more than 73% for filtered COD, 55% for gross COD and 81% for BOD<sub>5</sub> even if the residual concentrations do not respect the standards of wastewater discharge in our country. Also, the residual concentrations of ammonia nitrogen in the output effluents (on average 12.43 mg/L), do not meet the standard of discharge into surface waters of Burkina Faso (1.29 mg/L). Thus, nutrients such as nitrogen and phosphorus pollution have average abatement rates of 31% and 27% respectively. In sum, we can say that the lagoon system set up does not meet the requirements in terms of quality of discharges, which remains an environmental problem for the receiving environment.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2002AA601310).
文摘A pilot scale test was conducted in a submerged membrane bioreactor SMBR with capacity of 10. 0 m^3/d for 120 days to treat high-strength Chinese traditional medicine wastewater. Performance of the SMBR was investigated with a sludge retention time ( TSR ) of 50 days, a hydraulic retention time ( THR ) of 8.0 h, membrane flux of 8. 0 IV( m^2 · h) and dissolved oxygen (DO) concentration of 2. 0 - 3. 0 mg/L, respectively. It was observed that the SMBR had high capacity of COD and suspended solid (SS) removal. The influent COD concentration was fluctuated between I 000 and 5 000 mg/L, while the averaged effluent COl) concentration was only 44. 6 mg/L. The influent SS concentration was fluctuated between 1 000 and 1 600 mg/L, while little effluent SS was detected. It was found that the COD remove rate increased with mixed liquor suspended solids (MLSS) and organic loading rate (ROL). In order to obtain good-quality effluent, the operational conditions of the SMBR were suggested as follows: the temperature was controlled above 10 ℃, MLSS about 7000 mg/L, R,L under 24. 76 kg/( m^3 · d), low vacuum value and constant water flux.
文摘The purpose of this work is to study the co-cultivation of Chlorella sp. and wastewater wild algae under different cultivation conditions (i.e. CO2, light intensity, cultivation time, and inoculation ratio) for enhanced algal biomass and lipid productivity in wastewater medium using Response SuHhce Methodology (RSM). The results show that mixed cultures ofd7llorella sp. and wastewater wild algae increase biomass and lipid yield. Additionally, findings indicate that CO2, light intensity and cultivation time significantly affect algal productivity. Furthcnnore, CO2 concentration and light intensity, and CO2 concentration and algal composition, have an interactive effect on biomass productivity. Under dii"ferent cultivation conditions, the response of algal biomass, cell count, and lipid productlvlty ranges from2,5 to 10.2 mg/mL 1.1 × 10 to 8.2 × 10 cells/mL and 1.1 × 10^6 to 6.8 × 10^12 total fluorescent units/mL, respectively× The optimum conditions tbr simt, ltaneot, s biomass and lipid accumulation are 3.6% of CO2 (v/v), 160 μmol/m^2/s of light intensity, 1×6/2.4 of inoculation ratio (wastewater-algae/Chlorella), and 8.3 days of cultivation time. The optimal productivity is 9,8 (g/L) for dry biomass, 8.6 E + 08 (cells/mL) for cell count, and 6.8 E + 12 (Total FL units per mL) fbr lipid yield, achieving up to four times, eight times, and seven times higher productivity compared to non- optimized conditions. Provided is a supportive methodology to improve mixed algal culture for hioenergy feedstock generation and to optimize cultivation conditions in complex wastewater environments. This work is an important step tbrward in the development of sustainable large-scale algae cultivation for cost-efficient generation of biofuel.
基金the DAAD Sandwich Model Scholarships for Master's Students of the IITs and IIMs, 2016/17, who funded the research stay of Mr.Pravesh Tamang in Germany (Personal Ref No: 91635161)
文摘The production of polyhydroxyalkanoates(PHA) from wastewaters using microbial mixed cultures(MMC) has been attracting increased interest because of PHA's biodegradability characteristics. Production of PHA by an MMC enriched with PHA-accumulating bacteria was compared using anaerobically treated and acidified brewery wastewaters under various feeding strategies, namely pulse and batch feed addition. To obtain an enriched MMC, a sequencing batch reactor was inoculated with activated sludge fed with acetate and subjected to aerobic dynamic feeding. The enriched MMC was able to accumulate PHA up to 72.6% of cell dry weight(CDW) with pulse addition of acetate controlled by the dissolved oxygen(DO) concentration in the reactor. In a batch accumulation experiment with acetate,the PHA content achieved(28.5% CDW) was less than that of the pulse feeding strategy with the same amount of acetate(~2000 mg C/L). Using anaerobically treated and acidified brewery wastewater fed in pulses, the maximum PHA accumulated by the enriched MMC was similar for both wastewaters(45% CDW), in spite of the higher volatile fatty acid concentration in acidified brewery wastewater. The pulse feed addition controlled by the DO concentration was difficult to implement for wastewater as compared to acetate because the difference in DO concentration between substrate availability and depletion was low. For the batch addition of acidified wastewater, a slightly lower PHA content(39%CDW) was obtained. These results show that both brewery wastewaters can be utilized for PHA production with a similar maximum PHA storage capacity.
基金This work was supported by the Major Science and Technology Program forWater Pollution Control and Treatment(China)(No.2017ZX07302-001)the Research Program for In-depth Treatment Technology Upgradation of theWuxi Urban Sewage Treatment Plant(China)(N20191003)The authors also gratefully acknowledge the support of the Pre-research Fund of Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment(China)(No.XTCXSZ2020-2).
文摘In wastewater treatment plants(WWTPs),microplastics(MPs)are complex,especially with mixed domestic–industrial influents.Conventional random grab sampling can roughly depict the distribution and characteristics of MPs but can not accurately reflect their daily fluctuations.In this study,the concentration,shape,polymer type,size,and color of MPs were analyzed by micro-Raman spectroscopy(detection limit of 0.05 mm)throughout treatment stages of three mixed domestic–industrial WWTPs(W1,W2,and W3)in Wuxi City,China,and the daily fluctuations of MPs were also obtained by dense grab sampling within 24 h.For influent samples,the average MP concentration of 392.2 items/L in W1 with 10%industrial wastewater was much higher than those in W2(71.2 items/L with 10%industrial wastewater)and W3(38.3 items/L with 60%industrial wastewater).White polyethylene granules with a diameter less than 0.5 mm from plastic manufacturing were the most dominant MPs in the influent of W1,proving the key role of industrial sources in MPs pollution.In addition,the daily dense sampling results showed that MP concentration in W1 influent fluctuated widely between 29.1 items/L and 4617.6 items/L within a day.Finally,few MPs(less than 4.0 items/L)in these WWTPs effluents were attributed to the effective removal of wastewater treatment processes.Thus,further attention should be paid to regulating the primary sources of MPs.
基金supported by the Open Fund of Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling (No.2020B121201003)the National Natural Science Foundation of China (Nos.21876099,22106088,and 22276110)+1 种基金the Key Research&Developmental Program of Shandong Province (No.2021CXGC011202)the Fundamental Research Funds of Shandong University (No.zy202102)。
文摘Advanced oxidation processes have been widely studied for organic pollutants treatment in water,but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the anions and radicals,especially in high salinity conditions.Here,a singlet oxygen(^(1)O_(2))-dominated non-radical process was developed for organic pollutants degradation in high salinity wastewater,with layered crednerite(CuMnO_(2))as catalysts and peroxymonosulfate(PMS)as oxidant.Based on the experiments and density functional theory calculations,^(1)O_(2)was the dominating reactive species and the constructed Cu-O-Mn with electron-deficient Mn captured electron from PMS promoting the generation of^(1)O_(2).The rapid degradation of bisphenol A(BPA)was achieved by CuMnO_(2)/PMS system,which was 5-fold and 21-fold higher than that in Mn_(2)O_(3)/PMS system and Cu_(2)O/PMS system.The CuMnO_(2)/PMS system shown prominent BPA removal performance under high salinity conditions,prominent PMS utilization efficiency,outstanding total organic carbon removal rate,wide range of applicable pH and good stability.This work unveiled that the^(1)O_(2)-dominated non-radical process of CuMnO_(2)/PMS system overcame the inhibitory effect of anions in high salinity conditions,which provided a promising technique to remove organic pollutants from high saline wastewater.