Distinguishing the difficulty degree of top coal caving was a precondition of the popularization and application of the roadway sub-level caving in steep seam. Because of complexity and uncertainty of the coal seam, t...Distinguishing the difficulty degree of top coal caving was a precondition of the popularization and application of the roadway sub-level caving in steep seam. Because of complexity and uncertainty of the coal seam, the expression of influence factors was diffi-culty with exact data. According to the fuzzy and uncertainty of influence factors, triangular fuzzy membership functions were adopted to carry out the factors ambiguity, of which the factors not only have the consistency of semantic meaning, but also dissolve sufficiently expert knowledge. Based on the properties and structures of fasART fuzzy neural net-works of fuzzy logic system and practical needs, a simplified fasART model was put for-ward, stability and reliability of the network were improved, the deficiency of learning sam-ples and uncertainty of the factors were better treated. The method is of effective and practical value was identified by experiments.展开更多
The range of optimal values in cost optimization models provides management with options for decision making. However, it can be quite challenging to achieve feasible range of optimality in Geometric programming (Gp) ...The range of optimal values in cost optimization models provides management with options for decision making. However, it can be quite challenging to achieve feasible range of optimality in Geometric programming (Gp) models having negative degrees of difficulty. In this paper, we conduct sensitivity analysis on the optimal solution of Geometric programming problem with negative degree of difficulty. Using imprest data, we determine the optimal objective function, dual decision variables, primal decision variables;the range of values, the cost coefficient and RHS constraint must lie for the solution to stay optimal. From the analysis, we established that incremental sensitivity analysis has the functional form .展开更多
文摘Distinguishing the difficulty degree of top coal caving was a precondition of the popularization and application of the roadway sub-level caving in steep seam. Because of complexity and uncertainty of the coal seam, the expression of influence factors was diffi-culty with exact data. According to the fuzzy and uncertainty of influence factors, triangular fuzzy membership functions were adopted to carry out the factors ambiguity, of which the factors not only have the consistency of semantic meaning, but also dissolve sufficiently expert knowledge. Based on the properties and structures of fasART fuzzy neural net-works of fuzzy logic system and practical needs, a simplified fasART model was put for-ward, stability and reliability of the network were improved, the deficiency of learning sam-ples and uncertainty of the factors were better treated. The method is of effective and practical value was identified by experiments.
文摘The range of optimal values in cost optimization models provides management with options for decision making. However, it can be quite challenging to achieve feasible range of optimality in Geometric programming (Gp) models having negative degrees of difficulty. In this paper, we conduct sensitivity analysis on the optimal solution of Geometric programming problem with negative degree of difficulty. Using imprest data, we determine the optimal objective function, dual decision variables, primal decision variables;the range of values, the cost coefficient and RHS constraint must lie for the solution to stay optimal. From the analysis, we established that incremental sensitivity analysis has the functional form .