The pure γ-Ca2SiO4 (]t-C2S) phase was prepared at 1623 K of calcining temperature, 10 h of holding time and furnace cooling. The 13-C2S phase was obtained through γ-C2S conversion with the following calcination sy...The pure γ-Ca2SiO4 (]t-C2S) phase was prepared at 1623 K of calcining temperature, 10 h of holding time and furnace cooling. The 13-C2S phase was obtained through γ-C2S conversion with the following calcination system which was adopted at 1473 K of calcining temperature, 1 h of holding time and then water-cooling. The conversion rate of γ-C2S was studied by the Rietveld quantitative laboratory X-ray powder diffraction supported by synchrotron X-ray diffraction images. The refinement results show that the final conversion rate of γ-C2S is higher than 92%. The absolute error of the γ-C2S conversion rate between two Rietveld refinements (sample with or without α-Al2O3) is 3.6%, which shows that the Rietveld quantitative X-ray diffraction analysis is an appropriate and accurate method to quantify the γ-C2S conversion rate.展开更多
Fracture-cave reservoirs in carbonate rocks are characterized by a large difference in fracture and cavity size,and a sharp variation in lithology and velocity,thereby resulting in complex diffraction responses.Some s...Fracture-cave reservoirs in carbonate rocks are characterized by a large difference in fracture and cavity size,and a sharp variation in lithology and velocity,thereby resulting in complex diffraction responses.Some small-scale fractures and caves cause weak diffraction energy and would be obscured by the continuous reflection layer in the imaging section,thereby making them difficult to identify.This paper develops a diffraction wave imaging method in the dip domain,which can improve the resolution of small-scale diffractors in the imaging section.Common imaging gathers(CIGs)in the dip domain are extracted by Gaussian beam migration.In accordance with the geometric differences of the diffraction being quasilinear and the reflection being quasiparabolic in the dip-domain CIGs,we use slope analysis technique to filter waves and use Hanning window function to improve the diffraction wave separation level.The diffraction dip-domain CIGs are stacked horizontally to obtain diffraction imaging results.Wavefield separation analysis and numerical modeling results show that the slope analysis method,together with Hanning window filtering,can better suppress noise to obtain the diffraction dip-domain CIGs,thereby improving the clarity of the diffractors in the diffraction imaging section.展开更多
Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fra...Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,etc.Diffraction imaging is an important method to identify small-scale geological bodies and it has higher resolution than reflection imaging.In the common-offset domain,reflections are mostly expressed as smooth linear events,whereas diffractions are characterized by hyperbolic events.This paper proposes a diffraction extraction method based on double sparse transforms.The linear events can be sparsely expressed by the high-resolution linear Radon transform,and the curved events can be sparsely expressed by the Curvelet transform.A sparse inversion model is built and the alternating direction method is used to solve the inversion model.Simulation data and field data experimental results proved that the diffractions extraction method based on double sparse transforms can effectively improve the imaging quality of faults and other small-scale geological bodies.展开更多
Three-dimensional imaging with single orientation is a potential and novel technique. We successfully demonstrate that three-dimensional(3D) structure can be determined by a single orientation diffraction measuremen...Three-dimensional imaging with single orientation is a potential and novel technique. We successfully demonstrate that three-dimensional(3D) structure can be determined by a single orientation diffraction measurement for a phase object of double-layer Mie-scattering silica spheres on a Si3N4 membrane. Coherent diffraction pattern at high numerical aperture was acquired with an optical laser, and the oversampled pattern was projected from a planar detector onto the Ewald sphere.The double-layered spheres are reconstructed from the spherical diffraction pattern and a 2D curvature-corrected pattern,which improve convergence speed and stability of reconstruction.展开更多
The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstation...The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.展开更多
While ptychography is an algorithm based on coherent illumination,satisfactory reconstructions can still be generated in most experiments,even though the radiation sources that are used are not ideally coherent.The un...While ptychography is an algorithm based on coherent illumination,satisfactory reconstructions can still be generated in most experiments,even though the radiation sources that are used are not ideally coherent.The underlying physics of this phenomenon is that the diffraction patterns of partially coherent illumination can be treated as those of purely coherent illumination by altering the intensities of the diffracted beams relative to their real values.On the other hand,due to the inconsistency in the altering interference among all the diffraction beams,noise/distortion is always involved in the reconstructed images.Furthermore,for a weak object,the noise/distortion in the reconstruction can be mostly reduced by using a highly curved beam for illumination in the data recording and forcing the dark field diffraction to be zero in the reconstruction.展开更多
Coherent diffractive imaging (CDI) is a lensless imaging technique and can achieve a resolution beyond the Rayleigh or Abbe limit. The ptychographical iterative engine (PIE) is a CDI phase retrieval algorithm that...Coherent diffractive imaging (CDI) is a lensless imaging technique and can achieve a resolution beyond the Rayleigh or Abbe limit. The ptychographical iterative engine (PIE) is a CDI phase retrieval algorithm that uses multiple diffraction patterns obtained through the scan of a localized illumination on the specimen, which has been demonstrated successfully at optical and X-ray wavelengths. In this paper, a general PIE algorithm (gPIE) is presented and demonstrated with an He-Ne laser light diffraction dataset. This algorithm not only permits the removal of the accurate model of the illumination function in PIE, but also provides improved convergence speed and retrieval quality.展开更多
This review is focused on using computer image analysis as a means of objective and quantitative characterizing optical images of the macroscopic (e.g. microbial colonies) and the microscopic (e.g. single cell) object...This review is focused on using computer image analysis as a means of objective and quantitative characterizing optical images of the macroscopic (e.g. microbial colonies) and the microscopic (e.g. single cell) objects in the microbiological research. This is the way of making many visual inspection assays more objective and less time and labor consuming. Also, it can provide new visually inaccessible information on relation between some optical parameters and various biological features of the microbial cul-tures. Of special interest is application of image analysis in fluorescence microscopy as it opens new ways of using fluorescence based methodology for single microbial cell studies. Examples of using image analysis in the studies of both the macroscopic and the microscopic microbiological objects obtained by various imaging techniques are presented and discussed.展开更多
A nonlinear sliding mode adaptive controller for a thin-film diffractive imaging system is designed to achieve accurate pointing direction over the attitude of subarrays in large-diameter mirror arrays.The kinematics ...A nonlinear sliding mode adaptive controller for a thin-film diffractive imaging system is designed to achieve accurate pointing direction over the attitude of subarrays in large-diameter mirror arrays.The kinematics and dynamics equations based on error quaternion and angular velocity are derived,and a diffractive thin-film sub-mirror array controller is designed to point precisely.Moreover,the global stability of the controller is proved by the Lyapunov method.Since the controller can adaptively identify the inertia matrix of each sub-mirror system,it is robust to bounded disturbances and changes in inertia parameters.At the same time,the continuous arctangent function is introduced,which is effectively anti-chattering.The simulation results show that the designed controller can ensure the accurate tracking of the diffractive film in each sub-mirror in the presence of rotational inertia matrix uncertainty and various disturbances.展开更多
X-ray diffraction enhanced imaging (DEI) has extremely high sensitivity for weakly absorbing low- Z samples in medical and biological fields. In this paper, we propose an Algebra Reconstruction Technique (ART) ite...X-ray diffraction enhanced imaging (DEI) has extremely high sensitivity for weakly absorbing low- Z samples in medical and biological fields. In this paper, we propose an Algebra Reconstruction Technique (ART) iterative reconstruction algorithm for computed tomography of diffraction enhanced imaging (DEI-CT). An Ordered Subsets (OS) technique is used to accelerate the ART reconstruction. Few-view reconstruction is also studied, and a partial differential equation (PDE) type filter which has the ability of edge-preserving and denoising is used to improve the image quality and eliminate the artifacts. The proposed algorithm is validated with both the numerical simulations and the experiment at the Beijing synchrotron radiation facility (BSRF).展开更多
Neovascularization is correlative with many processes of diseases, especially for tumor growth, invasion, and metastasis. What is more, these tumor microvessels are totally different from normal vessels in morphology....Neovascularization is correlative with many processes of diseases, especially for tumor growth, invasion, and metastasis. What is more, these tumor microvessels are totally different from normal vessels in morphology. Therefore, observation of the morphologic distribution of microvessels is one of the key points for many researchers in the field. Using diffraction enhanced imaging (DEI), we observed the mirocvessles with diameter of about 40 μm in mouse liver. Moreover, the refraction image obtained from DEI shows higher image contrast and exhibits potential use for medical applications.展开更多
X-ray diffraction sorbing low-Z sample. How enhanced imaging (DEI) is applied to extract phase information from to inspect internal structures of weakly abraw images measured in different positions of rocking curve ...X-ray diffraction sorbing low-Z sample. How enhanced imaging (DEI) is applied to extract phase information from to inspect internal structures of weakly abraw images measured in different positions of rocking curve is the key problem of DEI. In this paper, we present an effective extraction method called polynomial curve fitting method, in order to extract accurate information angular in a fast speed. It is compared with the existing methods such as multiple-images statistical method and Gaussian curve fitting method. The experiments results on a plastic cylinder and a black ant at the Beijing Synchrotron Radiation Facility prove that the polynomial curve fitting method can obtain most approximate refraction-angle values and its computation speed is 10 times faster than the Gaussian curve fitting method.展开更多
Diffraction enhanced imaging (DEI) with edge enhancement is suitable for the observation of weakly absorbing objects. The potential ability of the DEI was explored for displaying the microanatomy and pathology of hu...Diffraction enhanced imaging (DEI) with edge enhancement is suitable for the observation of weakly absorbing objects. The potential ability of the DEI was explored for displaying the microanatomy and pathology of human eyeball in this work. The images of surgical specimens from malignant intraocular tumor of hospitalized patients were taken using the hard X-rays from the topography station of Beamline 4W1A at Beijing Synchrotron Radiation Facility (BSRF). The obtained radiographic images were analyzed in correlation with those of pathology. The results show that the anatomic and pathologic details of intraocular tumors in human beings can be observed clearly by DEI for the first time, with good visualization of the microscopic details of eyeball ring such as sclera, choroids and other details of intraocular organelles. And the best resolution of DEI images reaches up to the magnitude of several tens of μm. The results suggest that it is capable of exhibiting clearly the details of intraocular tumor using DEI method.展开更多
Under the assumption of weak scattering , the acoustical diffraction tomographic imaging of an object can be reconstructed by using the Born (or Rytov) approximation method . When the weak scattering assumption within...Under the assumption of weak scattering , the acoustical diffraction tomographic imaging of an object can be reconstructed by using the Born (or Rytov) approximation method . When the weak scattering assumption within the medium is not satisfied the multiple ultrasound scattering must be taken into account . In this case , the reconstruction results under the first-order Born approximation will be seriously distorted . In this paper we introduce an ' intermediate object function' into the wave equation and take iterative modification in space domain and spatial frequancy domain based on Born approximation . In this way , the distorted image will be improved step by step . In order to examine the method as mentioned above , we have just tried to make computerized simulations . The initial result shows that the quality of the image reconstructed from the object under non-weak scattering may be improved significantly .展开更多
Lensless imaging is an approach to microscopy in which a high-resolution image of an object is reconstructed from one or more measured diffraction patterns,providing a solution in situations where the use of imaging o...Lensless imaging is an approach to microscopy in which a high-resolution image of an object is reconstructed from one or more measured diffraction patterns,providing a solution in situations where the use of imaging optics is not possible.However,current lensless imaging methods are typically limited by the need for a light source with a narrow,stable and accurately known spectrum.We have developed a general approach to lensless imaging without spectral bandwidth limitations or sample requirements.We use two time-delayed coherent light pulses and show that scanning the pulse-to-pulse time delay allows the reconstruction of diffraction-limited images for all the spectral components in the pulse.In addition,we introduce an iterative phase retrieval algorithm that uses these spectrally resolved Fresnel diffraction patterns to obtain high-resolution images of complex extended objects.We demonstrate this two-pulse imaging method with octave-spanning visible light sources,in both transmission and reflection geometries,and with broadband extreme-ultraviolet radiation from a high-harmonic generation source.Our approach enables effective use of low-flux ultra-broadband sources,such as table-top high-harmonic generation systems,for high-resolution imaging.展开更多
We propose and experimentally demonstrate a noniterative diffractive imaging method for reconstructing the complex-valued transmission function of an object illuminated by spatially partially coherent light from the f...We propose and experimentally demonstrate a noniterative diffractive imaging method for reconstructing the complex-valued transmission function of an object illuminated by spatially partially coherent light from the far-field diffraction pattern.Our method is based on a pinhole array mask,which is specially designed such that the correlation function in the mask plane can be obtained directly by inverse Fourier transforming the diffraction pattern.Compared to the traditional iterative diffractive imaging methods using spatially partially coherent illumination,our method is noniterative and robust to the degradation of the spatial coherence of the illumination.In addition to diffractive imaging,the proposed method can also be applied to spatial coherence property characterization,e.g.,free-space optical communication and optical coherence singularity measurement.展开更多
With the development of the XFEL (X-ray free electron laser), high quality diffraction patterns from nanocrystals have been achieved. The nanocrystals with different sizes and random orientations are injected to the...With the development of the XFEL (X-ray free electron laser), high quality diffraction patterns from nanocrystals have been achieved. The nanocrystals with different sizes and random orientations are injected to the XFEL beams and the diffraction patterns can be obtained by the so-called "diffraction-and-destruction" mode. The recovery of orientations is one of the most critical steps in reconstructing the 3D structure of nanocrystals. There is already an approach to solve the orientation problem by using the automated indexing software in crystallography. However, this method cannot distinguish the twin orientations in the cases of the symmetries of Bravais lattices higher than the point groups. Here we propose a new method to solve this problem. The shape transforms of nanocrystals can be determined from all of the intensities around the diffraction spots, and then Fourier transformation of a single crystal cell is obtained. The actual orientations of the patterns can be solved by comparing the values of the Fourier transformations of the crystal cell on the intersections of all patterns. This so-called "multiple-common-line" method can distinguish the twin orientations in the XFEL diffraction patterns successfully.展开更多
Tomosynthesis is a three-dimension reconstruction method that can remove the effect of superim- position with limited angle projections. It is especially promising in mammography where radiation dose is concerned. In ...Tomosynthesis is a three-dimension reconstruction method that can remove the effect of superim- position with limited angle projections. It is especially promising in mammography where radiation dose is concerned. In this paper, we propose a maximum likelihood tomosynthesis reconstruction algorithm (ML-TS) on the apparent absorption data of diffraction enhanced imaging (DEI). The motivation of this contribution is to develop a tomosynthesis algorithm in low-dose or noisy circumstances and make DEI get closer to clinic application. The theoretical statistical models of DEI data in physics are analyzed and the proposed algorithm is validated with the experimental data at the Beijing Synchrotron Radiation Facility (BSRF). The results of ML-TS have better contrast compared with the well known 'shift-and-add' algorithm and FBP algorithm.展开更多
基金Project supported by the National Natural Science Foundation of China(No.51102181)the National Basic Research Program (973) of China(No.2009CB623104)the Open Fund of Large Apparatus of Tongji University(Nos.0002012004 and 0002012012),China
文摘The pure γ-Ca2SiO4 (]t-C2S) phase was prepared at 1623 K of calcining temperature, 10 h of holding time and furnace cooling. The 13-C2S phase was obtained through γ-C2S conversion with the following calcination system which was adopted at 1473 K of calcining temperature, 1 h of holding time and then water-cooling. The conversion rate of γ-C2S was studied by the Rietveld quantitative laboratory X-ray powder diffraction supported by synchrotron X-ray diffraction images. The refinement results show that the final conversion rate of γ-C2S is higher than 92%. The absolute error of the γ-C2S conversion rate between two Rietveld refinements (sample with or without α-Al2O3) is 3.6%, which shows that the Rietveld quantitative X-ray diffraction analysis is an appropriate and accurate method to quantify the γ-C2S conversion rate.
基金funded jointly by the National Natural Science Foundation of China(No.41104069)Shandong Province Higher Educational Science and Technology Program(No.J17KA197)+1 种基金Open Foundation of Shandong Provincial Key Laboratory of Depositional Mineralization&Sedimentary Minerals of Shandong University of Science and Technology(No.DMSM2018018)Chunhui Research Foundation of Shengli College,China University of Petroleum(No.KY2017007)。
文摘Fracture-cave reservoirs in carbonate rocks are characterized by a large difference in fracture and cavity size,and a sharp variation in lithology and velocity,thereby resulting in complex diffraction responses.Some small-scale fractures and caves cause weak diffraction energy and would be obscured by the continuous reflection layer in the imaging section,thereby making them difficult to identify.This paper develops a diffraction wave imaging method in the dip domain,which can improve the resolution of small-scale diffractors in the imaging section.Common imaging gathers(CIGs)in the dip domain are extracted by Gaussian beam migration.In accordance with the geometric differences of the diffraction being quasilinear and the reflection being quasiparabolic in the dip-domain CIGs,we use slope analysis technique to filter waves and use Hanning window function to improve the diffraction wave separation level.The diffraction dip-domain CIGs are stacked horizontally to obtain diffraction imaging results.Wavefield separation analysis and numerical modeling results show that the slope analysis method,together with Hanning window filtering,can better suppress noise to obtain the diffraction dip-domain CIGs,thereby improving the clarity of the diffractors in the diffraction imaging section.
基金supported by National Natural Science Foundation of China(41974166)Natural Science Foundation of Hebei Province(D2019403082,D2021403010)+1 种基金Hebei Province“three-threethree talent project”(A202005009)Funding for the Science and Technology Innovation Team Project of Hebei GEO University(KJCXTD202106)
文摘Reflection imaging results generally reveal large-scale continuous geological information,and it is difficult to identify small-scale geological bodies such as breakpoints,pinch points,small fault blocks,caves,and fractures,etc.Diffraction imaging is an important method to identify small-scale geological bodies and it has higher resolution than reflection imaging.In the common-offset domain,reflections are mostly expressed as smooth linear events,whereas diffractions are characterized by hyperbolic events.This paper proposes a diffraction extraction method based on double sparse transforms.The linear events can be sparsely expressed by the high-resolution linear Radon transform,and the curved events can be sparsely expressed by the Curvelet transform.A sparse inversion model is built and the alternating direction method is used to solve the inversion model.Simulation data and field data experimental results proved that the diffractions extraction method based on double sparse transforms can effectively improve the imaging quality of faults and other small-scale geological bodies.
基金Project supported by the Major State Basic Research Development Program of China(Grant No.2014CB910401)the National Natural Science Foundation of China(Grant Nos.31430031,21390414,and U1332118)
文摘Three-dimensional imaging with single orientation is a potential and novel technique. We successfully demonstrate that three-dimensional(3D) structure can be determined by a single orientation diffraction measurement for a phase object of double-layer Mie-scattering silica spheres on a Si3N4 membrane. Coherent diffraction pattern at high numerical aperture was acquired with an optical laser, and the oversampled pattern was projected from a planar detector onto the Ewald sphere.The double-layered spheres are reconstructed from the spherical diffraction pattern and a 2D curvature-corrected pattern,which improve convergence speed and stability of reconstruction.
基金the Shanghai Soft X-ray Free-Electron Laser Facility beamline projectionfunded by the Major State Basic Research Development Program of China(No.2017YFA0504802)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 37040303)National Natural Science Foundation of China(No.21727817).
文摘The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.
基金supported by the Funds from the Engineering and Physical Sciences Research Council(Grant No.EP/E034055/1)the One Hundred Talent Project of the Chinese Academy of Sciences and the Financial Support(Grant No.GFZX0205010502.12)
文摘While ptychography is an algorithm based on coherent illumination,satisfactory reconstructions can still be generated in most experiments,even though the radiation sources that are used are not ideally coherent.The underlying physics of this phenomenon is that the diffraction patterns of partially coherent illumination can be treated as those of purely coherent illumination by altering the intensities of the diffracted beams relative to their real values.On the other hand,due to the inconsistency in the altering interference among all the diffraction beams,noise/distortion is always involved in the reconstructed images.Furthermore,for a weak object,the noise/distortion in the reconstruction can be mostly reduced by using a highly curved beam for illumination in the data recording and forcing the dark field diffraction to be zero in the reconstruction.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11179009 and 50875013)the Beijing Municipal Natural Science Foundation, China (Grant No. 4102036)the Beijing NOVA Program, China (Grant No. 2009A09)
文摘Coherent diffractive imaging (CDI) is a lensless imaging technique and can achieve a resolution beyond the Rayleigh or Abbe limit. The ptychographical iterative engine (PIE) is a CDI phase retrieval algorithm that uses multiple diffraction patterns obtained through the scan of a localized illumination on the specimen, which has been demonstrated successfully at optical and X-ray wavelengths. In this paper, a general PIE algorithm (gPIE) is presented and demonstrated with an He-Ne laser light diffraction dataset. This algorithm not only permits the removal of the accurate model of the illumination function in PIE, but also provides improved convergence speed and retrieval quality.
文摘This review is focused on using computer image analysis as a means of objective and quantitative characterizing optical images of the macroscopic (e.g. microbial colonies) and the microscopic (e.g. single cell) objects in the microbiological research. This is the way of making many visual inspection assays more objective and less time and labor consuming. Also, it can provide new visually inaccessible information on relation between some optical parameters and various biological features of the microbial cul-tures. Of special interest is application of image analysis in fluorescence microscopy as it opens new ways of using fluorescence based methodology for single microbial cell studies. Examples of using image analysis in the studies of both the macroscopic and the microscopic microbiological objects obtained by various imaging techniques are presented and discussed.
基金supported by the Central University Basic Research Fund of China(No.3072022CFJ0202)the Central University Basic Research Fund of China(No.3072022CFJ0204)。
文摘A nonlinear sliding mode adaptive controller for a thin-film diffractive imaging system is designed to achieve accurate pointing direction over the attitude of subarrays in large-diameter mirror arrays.The kinematics and dynamics equations based on error quaternion and angular velocity are derived,and a diffractive thin-film sub-mirror array controller is designed to point precisely.Moreover,the global stability of the controller is proved by the Lyapunov method.Since the controller can adaptively identify the inertia matrix of each sub-mirror system,it is robust to bounded disturbances and changes in inertia parameters.At the same time,the continuous arctangent function is introduced,which is effectively anti-chattering.The simulation results show that the designed controller can ensure the accurate tracking of the diffractive film in each sub-mirror in the presence of rotational inertia matrix uncertainty and various disturbances.
基金Supported by National Natural Science Foundation of China (10875066)Program for New Century Excellent Talents in University (NCET-05-0060)
文摘X-ray diffraction enhanced imaging (DEI) has extremely high sensitivity for weakly absorbing low- Z samples in medical and biological fields. In this paper, we propose an Algebra Reconstruction Technique (ART) iterative reconstruction algorithm for computed tomography of diffraction enhanced imaging (DEI-CT). An Ordered Subsets (OS) technique is used to accelerate the ART reconstruction. Few-view reconstruction is also studied, and a partial differential equation (PDE) type filter which has the ability of edge-preserving and denoising is used to improve the image quality and eliminate the artifacts. The proposed algorithm is validated with both the numerical simulations and the experiment at the Beijing synchrotron radiation facility (BSRF).
基金Supported by National Natural Science Foundation of China (30471652)
文摘Neovascularization is correlative with many processes of diseases, especially for tumor growth, invasion, and metastasis. What is more, these tumor microvessels are totally different from normal vessels in morphology. Therefore, observation of the morphologic distribution of microvessels is one of the key points for many researchers in the field. Using diffraction enhanced imaging (DEI), we observed the mirocvessles with diameter of about 40 μm in mouse liver. Moreover, the refraction image obtained from DEI shows higher image contrast and exhibits potential use for medical applications.
基金Supported by National Natural Science Foundation of China (10875066, 30770618)Program for New Century Excellent Talents in University (NCET-05-0060)
文摘X-ray diffraction sorbing low-Z sample. How enhanced imaging (DEI) is applied to extract phase information from to inspect internal structures of weakly abraw images measured in different positions of rocking curve is the key problem of DEI. In this paper, we present an effective extraction method called polynomial curve fitting method, in order to extract accurate information angular in a fast speed. It is compared with the existing methods such as multiple-images statistical method and Gaussian curve fitting method. The experiments results on a plastic cylinder and a black ant at the Beijing Synchrotron Radiation Facility prove that the polynomial curve fitting method can obtain most approximate refraction-angle values and its computation speed is 10 times faster than the Gaussian curve fitting method.
基金Supported by National Natural Science Foundation (10490195)Key Project of Chinese National Programs for Fundamental Research and Development (973 program) (2006cb500700)Natural Science and Technology Foundation of Guangdong Province(04009356,2008B030301320)
文摘Diffraction enhanced imaging (DEI) with edge enhancement is suitable for the observation of weakly absorbing objects. The potential ability of the DEI was explored for displaying the microanatomy and pathology of human eyeball in this work. The images of surgical specimens from malignant intraocular tumor of hospitalized patients were taken using the hard X-rays from the topography station of Beamline 4W1A at Beijing Synchrotron Radiation Facility (BSRF). The obtained radiographic images were analyzed in correlation with those of pathology. The results show that the anatomic and pathologic details of intraocular tumors in human beings can be observed clearly by DEI for the first time, with good visualization of the microscopic details of eyeball ring such as sclera, choroids and other details of intraocular organelles. And the best resolution of DEI images reaches up to the magnitude of several tens of μm. The results suggest that it is capable of exhibiting clearly the details of intraocular tumor using DEI method.
文摘Under the assumption of weak scattering , the acoustical diffraction tomographic imaging of an object can be reconstructed by using the Born (or Rytov) approximation method . When the weak scattering assumption within the medium is not satisfied the multiple ultrasound scattering must be taken into account . In this case , the reconstruction results under the first-order Born approximation will be seriously distorted . In this paper we introduce an ' intermediate object function' into the wave equation and take iterative modification in space domain and spatial frequancy domain based on Born approximation . In this way , the distorted image will be improved step by step . In order to examine the method as mentioned above , we have just tried to make computerized simulations . The initial result shows that the quality of the image reconstructed from the object under non-weak scattering may be improved significantly .
基金This work is financed in part by an NWO-groot investment grant of the Netherlands Organisation for Scientific Research(NWO)and Laserlab Europe(JRA Bioptichal)SW acknowledges support from NWO Veni grant 680-47-402.
文摘Lensless imaging is an approach to microscopy in which a high-resolution image of an object is reconstructed from one or more measured diffraction patterns,providing a solution in situations where the use of imaging optics is not possible.However,current lensless imaging methods are typically limited by the need for a light source with a narrow,stable and accurately known spectrum.We have developed a general approach to lensless imaging without spectral bandwidth limitations or sample requirements.We use two time-delayed coherent light pulses and show that scanning the pulse-to-pulse time delay allows the reconstruction of diffraction-limited images for all the spectral components in the pulse.In addition,we introduce an iterative phase retrieval algorithm that uses these spectrally resolved Fresnel diffraction patterns to obtain high-resolution images of complex extended objects.We demonstrate this two-pulse imaging method with octave-spanning visible light sources,in both transmission and reflection geometries,and with broadband extreme-ultraviolet radiation from a high-harmonic generation source.Our approach enables effective use of low-flux ultra-broadband sources,such as table-top high-harmonic generation systems,for high-resolution imaging.
基金This work was supported by the National Natural Science Foundation of China(Nos.11774250 , 91750201)the National Natural Science Fund for Distinguished Young Scholars(No.11525418)the sponsorship of Jiangsu Overseas Research and Training Program for Prominent Young and Middle-aged University Teachers and Presidents.This work is also part of the research program“Novel design shapes for complex optical systems,”with Project No.12797,which is(partly)financed by the Netherlands Organization for Scientific Research(NWO).
文摘We propose and experimentally demonstrate a noniterative diffractive imaging method for reconstructing the complex-valued transmission function of an object illuminated by spatially partially coherent light from the far-field diffraction pattern.Our method is based on a pinhole array mask,which is specially designed such that the correlation function in the mask plane can be obtained directly by inverse Fourier transforming the diffraction pattern.Compared to the traditional iterative diffractive imaging methods using spatially partially coherent illumination,our method is noniterative and robust to the degradation of the spatial coherence of the illumination.In addition to diffractive imaging,the proposed method can also be applied to spatial coherence property characterization,e.g.,free-space optical communication and optical coherence singularity measurement.
基金Supported by National Natural Science Foundation of China (10979005)National Basic Research Program of China(2009CB918600)
文摘With the development of the XFEL (X-ray free electron laser), high quality diffraction patterns from nanocrystals have been achieved. The nanocrystals with different sizes and random orientations are injected to the XFEL beams and the diffraction patterns can be obtained by the so-called "diffraction-and-destruction" mode. The recovery of orientations is one of the most critical steps in reconstructing the 3D structure of nanocrystals. There is already an approach to solve the orientation problem by using the automated indexing software in crystallography. However, this method cannot distinguish the twin orientations in the cases of the symmetries of Bravais lattices higher than the point groups. Here we propose a new method to solve this problem. The shape transforms of nanocrystals can be determined from all of the intensities around the diffraction spots, and then Fourier transformation of a single crystal cell is obtained. The actual orientations of the patterns can be solved by comparing the values of the Fourier transformations of the crystal cell on the intersections of all patterns. This so-called "multiple-common-line" method can distinguish the twin orientations in the XFEL diffraction patterns successfully.
基金Supported by National Natural Science Foundation of China (10875066)Program for New Century Excellent Talents in University (NCET-05-0060)
文摘Tomosynthesis is a three-dimension reconstruction method that can remove the effect of superim- position with limited angle projections. It is especially promising in mammography where radiation dose is concerned. In this paper, we propose a maximum likelihood tomosynthesis reconstruction algorithm (ML-TS) on the apparent absorption data of diffraction enhanced imaging (DEI). The motivation of this contribution is to develop a tomosynthesis algorithm in low-dose or noisy circumstances and make DEI get closer to clinic application. The theoretical statistical models of DEI data in physics are analyzed and the proposed algorithm is validated with the experimental data at the Beijing Synchrotron Radiation Facility (BSRF). The results of ML-TS have better contrast compared with the well known 'shift-and-add' algorithm and FBP algorithm.