The round-beam operation presents many benefits for scientific experiments regarding synchrotron radiation and the weak-ening influences of intra-beam scattering in diffraction-limited synchrotron light sources.A roun...The round-beam operation presents many benefits for scientific experiments regarding synchrotron radiation and the weak-ening influences of intra-beam scattering in diffraction-limited synchrotron light sources.A round-beam generation method based on the global setting of skew quadrupoles and the application of a non-dominated sorting genetic algorithm was pro-posed in this study.Two schemes,including large-emittance coupling introduced via betatron coupling and vertical disper-sion,were explored in a candidate lattice for an upgrade-proposal of the Shanghai synchrotron radiation facility.Emittance variations with lattice imperfections and their influence on the beam dynamics of beam optic distortions were investigated.The results demonstrated that a precise coupling control ranging from 10 to 100%was achieved under low optical distortion,whereas full-coupling generation and its robustness were achieved by our proposed method by adjusting the skew quadrupole components located in the dispersion-free sections.The Touschek lifetime increased by a factor of 2–2.5.展开更多
New-generation synchrotron light sources are being designed and operated worldwide to provide brighter radiation by reducing the beam emittance to X-ray diffraction limits.Intra-beam scattering(IBS)and Touschek scatte...New-generation synchrotron light sources are being designed and operated worldwide to provide brighter radiation by reducing the beam emittance to X-ray diffraction limits.Intra-beam scattering(IBS)and Touschek scattering in such facilities are significant and require attention because of their ultra-low emittance.Therefore,cure strategies need to be carefully studied to obtain highquality photon beams.For the Shanghai Synchrotron Radiation Facility Upgrade(SSRF-U),a candidate lattice of the storage ring,reaching the soft X-ray diffraction limit,was designed and presented for the first time in this study.The emittance growth and beam lifetime in the SSRF-U storage ring were studied using particle simulations for a series of different machine configurations.The gains with RF frequencies of 100 MHz and 500 MHz were compared.Along with a better filling pattern,a more suitable RF frequency was adopted in the SSRF-U.The variations in the equilibrium beam emittance with beam coupling and bunch-lengthening were identified using simulations.Optimal beam coupling and required bunch-lengthening for the SSRF-U storage ring were thus determined.The fitness of the beam energy in the SSRF-U was subsequently assessed using the obtained parameters.Additionally,the Touschek scattering and beam lifetime were calculated,and an acceptable total beam lifetime was obtained.展开更多
This paper, based on the Kavaya-Suni format, discusses the signal-to-noise ratio equation of the diffraction-limited coherent CO 2 lidar in detail, which is applied to atmospheric turbulence. The cumulative SNR and r...This paper, based on the Kavaya-Suni format, discusses the signal-to-noise ratio equation of the diffraction-limited coherent CO 2 lidar in detail, which is applied to atmospheric turbulence. The cumulative SNR and relative SNR, which are all affected by the nonlinear effects of the diffraction-limited Gaussian beam, atmospheric molecule and atmospheric turbulence, are simulated by microcomputer. Six instructions for the optimal design of IR CO 2 Coherent Lidar System, are provided.展开更多
A further study on the fabrication of diffraction--limited full aperture microlens array by melting photoresist is described. The formation of aspherical surface is considered. The parameters for controlling the proce...A further study on the fabrication of diffraction--limited full aperture microlens array by melting photoresist is described. The formation of aspherical surface is considered. The parameters for controlling the process of lens production, the height of original photoresist cylinders and the angle of contact between the melted photoresist and the substrate, are discussed in detail. The diffraction limited full--aperture microlens arrays have been obtained,and some measurement results are shown in the paper. A method of controlling the formation of quality microlens array in real time is suggested.展开更多
In the lattice design of a diffraction-limited storage ring(DLSR) consisting of compact multi-bend achromats(MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear pe...In the lattice design of a diffraction-limited storage ring(DLSR) consisting of compact multi-bend achromats(MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear performance, due to extremely large nonlinearities and limited tuning ranges of the element parameters. Nevertheless, in this paper we show that the potential of a DLSR design can be explored with a successive and iterative implementation of the multi-objective particle swarm optimization(MOPSO) and multi-objective genetic algorithm(MOGA). For the High Energy Photon Source, a planned kilometer-scale DLSR, optimizations indicate that it is feasible to attain a natural emittance of about 50 pm·rad, and simultaneously realize a sufficient ring acceptance for on-axis longitudinal injection, by using a hybrid MBA lattice. In particular, this study demonstrates that a rational combination of the MOPSO and MOGA is more effective than either of them alone, in approaching the true global optima of an explorative multi-objective problem with many optimizing variables and local optima.展开更多
We present a near diffraction-limited 1 064-nm Nd:YAG rod laser with output power of 82.3 W (M2 ≈1.38). The power fluctuation over two hours is better than ±1.1%. Pulsed 1 064-nm laser with an average power o...We present a near diffraction-limited 1 064-nm Nd:YAG rod laser with output power of 82.3 W (M2 ≈1.38). The power fluctuation over two hours is better than ±1.1%. Pulsed 1 064-nm laser with an average power of 66.6 W and pulse width of 46 ns are achieved when the laser is Q-switched at a repetition rate of 10 kHz. The short pulse duration stems from Using intracavity-frequency-doubling, a 35.0-W achieved with a pulse width of 43 ns. the short cavity as well as the high-gain laser modules. near diffraction-limited 532-nm green laser (M2 ≈1.32) is展开更多
In an electron storage ring, the bunch length can be increased or decreased by using harmonic cavities. Taking the High Energy Photon Source as an example, we test the bunch length manipulation with harmonic cavities ...In an electron storage ring, the bunch length can be increased or decreased by using harmonic cavities. Taking the High Energy Photon Source as an example, we test the bunch length manipulation with harmonic cavities in a diffraction-limited storage ring (DLSR). The most important collective effects in a DLSR, intra-beam scattering and Touschek effects, are evaluated for different bunch-length patterns. Our study shows that it is feasible to produce long and short bunches simultaneously in a DLSR, without causing severe emittance growth and reduction in lifetime.展开更多
Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing t...Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing the number of photons getting discarded and better phase space match between photon and electron beam.Conventional methods of obtaining round beam inescapably results in a reduction of dynamic aperture(DA).In order to recover the DA as much as possible for improving the injection efficiency,the DA optimization by using Non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)to generate round beam,particularly to one of the designed lattice of the High Energy Photon Source(HEPS)storage ring,are presented.Method According to the general unconstrained model of NSGA-Ⅱ,we modified the standard model by using parallel computing to optimize round beam lattices with errors,especially for a strong coupling,such as solenoid scheme.Results and conclusion The results of numerical tracking verify the correction of the theory framework of solenoids with fringe fields and demonstrates the feasibility on the HEPS storage ring with errors to operate in round beam mode after optimizing DA.展开更多
To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light source...To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.展开更多
In recent years,a new generation of storage ring-based light sources,known as diffraction-limited storage rings(DLSRs),whose emittance approaches the diffraction limit for the range of X-ray wavelengths of interest to...In recent years,a new generation of storage ring-based light sources,known as diffraction-limited storage rings(DLSRs),whose emittance approaches the diffraction limit for the range of X-ray wavelengths of interest to the scientific community,has garnered significant attention worldwide.Researchers have begun to design and build DLSRs.Among various DLSR proposals,the hybrid multibend achromat(H-MBA)lattice enables sextupole strengths to be maintained at a reasonable level when minimizing the emittance;hence,it has been adopted in many DLSR designs.Based on the H-7BA lattice,the design of the Advanced Photon Source Upgrade Project(APS-U)can effectively reduce emittance by replacing six quadrupoles with anti-bends.Herein,we discuss the feasibility of designing an APS-U-type H-MBA lattice for the Southern Advanced Photon Source,a mid-energy DLSR light source with ultralow emittance that has been proposed to be built adjacent to the China Spallation Neutron Source.Both linear and nonlinear dynamics are optimized to obtain a detailed design of this type of lattice.The emittance is minimized,while a sufficiently large dynamic aperture(DA)and momentum acceptance(MA)are maintained.A design comprising 36 APS-U type H-7BAs,with an energy of 3 GeV and a circumference of 972 m,is achieved.The horizontal natural emittance is 20 pm·rad,with a horizontal DA of 5.8 mm,a vertical DA of 4.5 mm,and an MA of 4%,as well as a long longitudinal damping time of 120 ms.Subsequently,a few modifications are performed based on the APS-U-type lattice to reduce the maximum value of damping time from 120 to 44 ms while maintaining other performance parameters at the same level.展开更多
To date, two-color pulses are widely used in pump–probe experiments. For a ring-based light source, the power of the spontaneous radiation fluctuates randomly in the longitudinal direction. It is difficult to produce...To date, two-color pulses are widely used in pump–probe experiments. For a ring-based light source, the power of the spontaneous radiation fluctuates randomly in the longitudinal direction. It is difficult to produce twocolor double pulses by optical methods. In this paper, we introduce a method based on the echo-enabled harmonic generation scheme that generates two-color pulses in a storage ring light source. By adopting crossed undulators and a phase shifter, the polarization of the two-color pulses can be easily switched. A numerical simulation based on a diffraction-limited storage ring, the Hefei Advanced Light Source, suggests that the time delay and spectral separation of the two pulses can be adjusted linearly by changing the pulse duration and chirp parameters of the seed laser. A circular polarization degree above 80% could be achieved.展开更多
The High Energy Photon Source(HEPS)is a 6 GeV diffraction-limited storage ring light source under construction.The swap-out injection is adopted with the depleted bunch recycled via high-energy accumulation in the boo...The High Energy Photon Source(HEPS)is a 6 GeV diffraction-limited storage ring light source under construction.The swap-out injection is adopted with the depleted bunch recycled via high-energy accumulation in the booster.The extremely high beam energy density of the bunches with an ultra-low emittance(about 30 pm horizontally and 3 pm vertically)and high bunch charges(from 1.33 to 14.4 nC)extracted from the storage ring could cause hazardous damage to the extraction Lambertson magnet in case of extraction kicker failure.To this end,we proposed the use of a pre-kicker to spoil the bunches prior to extraction,significantly reducing the maximum beam energy density down to within a safe region while still maintaining highly efficient extractions.The main parameters of the pre-kicker are simulated and discussed.展开更多
For a compact quantum key distribution (QKD) sender for the polarization encoding BB84 protocol, an eavesdropper could take a side-channel attack by measuring the spatial information of photons to infer their polariza...For a compact quantum key distribution (QKD) sender for the polarization encoding BB84 protocol, an eavesdropper could take a side-channel attack by measuring the spatial information of photons to infer their polarizations. The possibility of this attack can be reduced by introducing an aperture in the QKD sender, however, the effect of the aperture on the QKD security lacks of quantitative analysis. In this paper, we analyze the mutual information between the actual keys encoded at this QKD sender and the inferred keys at the eavesdropper (Eve), demonstrating the effect of the aperture to eliminate the spatial side-channel information quantitatively. It shows that Eve’s potential on eavesdropping spatial side-channel information is totally dependent on the optical design of the QKD sender, including the source arrangement and the aperture. The height of compact QKD senders with integrated light-emitting diode (LED) arrays could be controlled under several millimeters, showing great potential on applications in portable equipment.展开更多
Background The Hefei Advanced Light Facility(HALF)will be a VUV and soft X-ray diffraction-limited storage ring(DLSR),and its high density of electron bunches makes the intra-beam scattering(IBS)effect very serious.Me...Background The Hefei Advanced Light Facility(HALF)will be a VUV and soft X-ray diffraction-limited storage ring(DLSR),and its high density of electron bunches makes the intra-beam scattering(IBS)effect very serious.Methods An IBS module used in the IMPACT code is developed,where the scattering process of IBS is described by the Piwinski model in Monte Carlo sampling.In the IMPACT code with IBS module,the macroparticle beam in storage ring is numerically tracked,including motion under external electromagnetic field and the IBS scattering process.And the long-term tracking results of macroparticle beam are statistically analyzed.Results and conclusions The results of IBS effect in the HALF storage ring studied by this new code are presented.For benchmarking,the IMPACT code with IBS module is compared with the ELEGANT code and a semi-analytic code using Bane’s model,and the results agree well with each other.With various countermeasures,the IBS impact can be controlled to a certain extent,and the expected beam emittance is approximately 59 pm·rad.展开更多
A new generation of storage ring-based light sources,called diffraction-limited storage rings(DLSRs),with emittance approaching the diffraction limit for multi-keV photons by means of multi-bend achromat lattices,ha...A new generation of storage ring-based light sources,called diffraction-limited storage rings(DLSRs),with emittance approaching the diffraction limit for multi-keV photons by means of multi-bend achromat lattices,has attracted extensive studies worldwide.Among various DLSR proposals,the hybrid multi-bend achromat concept developed at the European Synchrotron Radiation Facility(ESRF) predicts an effective way of minimizing the emittance while keeping the required chromatic sextupole strengths to an achievable level.For the High Energy Photon Source planned to be built in Beijing,an ESRF-type lattice design consisting of 48 hybrid seven-bend achromats is proposed to reach emittance as low as 60 pm-rad with a circumference of about 1296 m.Sufficient dynamic aperture,allowing vertical on-axis injection,and moderate momentum acceptance are achieved simultaneously for a promising ring performance.展开更多
文摘The round-beam operation presents many benefits for scientific experiments regarding synchrotron radiation and the weak-ening influences of intra-beam scattering in diffraction-limited synchrotron light sources.A round-beam generation method based on the global setting of skew quadrupoles and the application of a non-dominated sorting genetic algorithm was pro-posed in this study.Two schemes,including large-emittance coupling introduced via betatron coupling and vertical disper-sion,were explored in a candidate lattice for an upgrade-proposal of the Shanghai synchrotron radiation facility.Emittance variations with lattice imperfections and their influence on the beam dynamics of beam optic distortions were investigated.The results demonstrated that a precise coupling control ranging from 10 to 100%was achieved under low optical distortion,whereas full-coupling generation and its robustness were achieved by our proposed method by adjusting the skew quadrupole components located in the dispersion-free sections.The Touschek lifetime increased by a factor of 2–2.5.
基金The authors would like to thank Dr.Na Wang and Sai-Ke Tian in IHEP for their useful discussions.
文摘New-generation synchrotron light sources are being designed and operated worldwide to provide brighter radiation by reducing the beam emittance to X-ray diffraction limits.Intra-beam scattering(IBS)and Touschek scattering in such facilities are significant and require attention because of their ultra-low emittance.Therefore,cure strategies need to be carefully studied to obtain highquality photon beams.For the Shanghai Synchrotron Radiation Facility Upgrade(SSRF-U),a candidate lattice of the storage ring,reaching the soft X-ray diffraction limit,was designed and presented for the first time in this study.The emittance growth and beam lifetime in the SSRF-U storage ring were studied using particle simulations for a series of different machine configurations.The gains with RF frequencies of 100 MHz and 500 MHz were compared.Along with a better filling pattern,a more suitable RF frequency was adopted in the SSRF-U.The variations in the equilibrium beam emittance with beam coupling and bunch-lengthening were identified using simulations.Optimal beam coupling and required bunch-lengthening for the SSRF-U storage ring were thus determined.The fitness of the beam energy in the SSRF-U was subsequently assessed using the obtained parameters.Additionally,the Touschek scattering and beam lifetime were calculated,and an acceptable total beam lifetime was obtained.
文摘This paper, based on the Kavaya-Suni format, discusses the signal-to-noise ratio equation of the diffraction-limited coherent CO 2 lidar in detail, which is applied to atmospheric turbulence. The cumulative SNR and relative SNR, which are all affected by the nonlinear effects of the diffraction-limited Gaussian beam, atmospheric molecule and atmospheric turbulence, are simulated by microcomputer. Six instructions for the optimal design of IR CO 2 Coherent Lidar System, are provided.
文摘A further study on the fabrication of diffraction--limited full aperture microlens array by melting photoresist is described. The formation of aspherical surface is considered. The parameters for controlling the process of lens production, the height of original photoresist cylinders and the angle of contact between the melted photoresist and the substrate, are discussed in detail. The diffraction limited full--aperture microlens arrays have been obtained,and some measurement results are shown in the paper. A method of controlling the formation of quality microlens array in real time is suggested.
基金Supported by NSFC(11475202,11405187)Youth Innovation Promotion Association CAS(2015009)
文摘In the lattice design of a diffraction-limited storage ring(DLSR) consisting of compact multi-bend achromats(MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear performance, due to extremely large nonlinearities and limited tuning ranges of the element parameters. Nevertheless, in this paper we show that the potential of a DLSR design can be explored with a successive and iterative implementation of the multi-objective particle swarm optimization(MOPSO) and multi-objective genetic algorithm(MOGA). For the High Energy Photon Source, a planned kilometer-scale DLSR, optimizations indicate that it is feasible to attain a natural emittance of about 50 pm·rad, and simultaneously realize a sufficient ring acceptance for on-axis longitudinal injection, by using a hybrid MBA lattice. In particular, this study demonstrates that a rational combination of the MOPSO and MOGA is more effective than either of them alone, in approaching the true global optima of an explorative multi-objective problem with many optimizing variables and local optima.
基金supported by the National Key Scientific Research Project of China(No.2012CB934200)the National "863" Program of China(No.2011AA030206)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KGCX2-YW-399+10)
文摘We present a near diffraction-limited 1 064-nm Nd:YAG rod laser with output power of 82.3 W (M2 ≈1.38). The power fluctuation over two hours is better than ±1.1%. Pulsed 1 064-nm laser with an average power of 66.6 W and pulse width of 46 ns are achieved when the laser is Q-switched at a repetition rate of 10 kHz. The short pulse duration stems from Using intracavity-frequency-doubling, a 35.0-W achieved with a pulse width of 43 ns. the short cavity as well as the high-gain laser modules. near diffraction-limited 532-nm green laser (M2 ≈1.32) is
基金Supported by National Natural Science Foundation of China(11475202,11405187)Youth Innovation Promotion Association of Chinese Academy of Sciences(2015009)
文摘In an electron storage ring, the bunch length can be increased or decreased by using harmonic cavities. Taking the High Energy Photon Source as an example, we test the bunch length manipulation with harmonic cavities in a diffraction-limited storage ring (DLSR). The most important collective effects in a DLSR, intra-beam scattering and Touschek effects, are evaluated for different bunch-length patterns. Our study shows that it is feasible to produce long and short bunches simultaneously in a DLSR, without causing severe emittance growth and reduction in lifetime.
基金supported by the Guangdong Joint fund for basic and applied basic research(Guangdong-dongguan,Grant Number 2019B1515120069,2019).
文摘Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing the number of photons getting discarded and better phase space match between photon and electron beam.Conventional methods of obtaining round beam inescapably results in a reduction of dynamic aperture(DA).In order to recover the DA as much as possible for improving the injection efficiency,the DA optimization by using Non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)to generate round beam,particularly to one of the designed lattice of the High Energy Photon Source(HEPS)storage ring,are presented.Method According to the general unconstrained model of NSGA-Ⅱ,we modified the standard model by using parallel computing to optimize round beam lattices with errors,especially for a strong coupling,such as solenoid scheme.Results and conclusion The results of numerical tracking verify the correction of the theory framework of solenoids with fringe fields and demonstrates the feasibility on the HEPS storage ring with errors to operate in round beam mode after optimizing DA.
基金supported by National Natural Science Foundation of China(No.11475202,11405187)the Youth Innovation Association of Chinese Academy of SciencesKey Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-SLH001)
文摘To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.
基金This work was supported by the National Natural Science Foundation of China(No.11922512)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.Y201904)the Guangdong Basic and Applied Basic Research Foundation—Guangdong Dongguan Joint Foundation(No.2019B1515120069).
文摘In recent years,a new generation of storage ring-based light sources,known as diffraction-limited storage rings(DLSRs),whose emittance approaches the diffraction limit for the range of X-ray wavelengths of interest to the scientific community,has garnered significant attention worldwide.Researchers have begun to design and build DLSRs.Among various DLSR proposals,the hybrid multibend achromat(H-MBA)lattice enables sextupole strengths to be maintained at a reasonable level when minimizing the emittance;hence,it has been adopted in many DLSR designs.Based on the H-7BA lattice,the design of the Advanced Photon Source Upgrade Project(APS-U)can effectively reduce emittance by replacing six quadrupoles with anti-bends.Herein,we discuss the feasibility of designing an APS-U-type H-MBA lattice for the Southern Advanced Photon Source,a mid-energy DLSR light source with ultralow emittance that has been proposed to be built adjacent to the China Spallation Neutron Source.Both linear and nonlinear dynamics are optimized to obtain a detailed design of this type of lattice.The emittance is minimized,while a sufficiently large dynamic aperture(DA)and momentum acceptance(MA)are maintained.A design comprising 36 APS-U type H-7BAs,with an energy of 3 GeV and a circumference of 972 m,is achieved.The horizontal natural emittance is 20 pm·rad,with a horizontal DA of 5.8 mm,a vertical DA of 4.5 mm,and an MA of 4%,as well as a long longitudinal damping time of 120 ms.Subsequently,a few modifications are performed based on the APS-U-type lattice to reduce the maximum value of damping time from 120 to 44 ms while maintaining other performance parameters at the same level.
基金supported by the National Natural Science Foundation of China(Nos.11475202,11405187)Youth Innovation Association of Chinese Academy of Sciences,and Bureau of Frontier Sciences and Education,Chinese Academy of Sciences(No.QYZDJ-SSWSLH001)National Key R&D Program of China(No.2016YFA0401900)
文摘To date, two-color pulses are widely used in pump–probe experiments. For a ring-based light source, the power of the spontaneous radiation fluctuates randomly in the longitudinal direction. It is difficult to produce twocolor double pulses by optical methods. In this paper, we introduce a method based on the echo-enabled harmonic generation scheme that generates two-color pulses in a storage ring light source. By adopting crossed undulators and a phase shifter, the polarization of the two-color pulses can be easily switched. A numerical simulation based on a diffraction-limited storage ring, the Hefei Advanced Light Source, suggests that the time delay and spectral separation of the two pulses can be adjusted linearly by changing the pulse duration and chirp parameters of the seed laser. A circular polarization degree above 80% could be achieved.
基金the National Natural Science Foundation of China(Nos.11605212,11475200,and 11675194)Youth Innovation Promotion Association CAS(No.2021012)High Energy Photon Source(HEPS),a major national science and technology infrastructure in China.
文摘The High Energy Photon Source(HEPS)is a 6 GeV diffraction-limited storage ring light source under construction.The swap-out injection is adopted with the depleted bunch recycled via high-energy accumulation in the booster.The extremely high beam energy density of the bunches with an ultra-low emittance(about 30 pm horizontally and 3 pm vertically)and high bunch charges(from 1.33 to 14.4 nC)extracted from the storage ring could cause hazardous damage to the extraction Lambertson magnet in case of extraction kicker failure.To this end,we proposed the use of a pre-kicker to spoil the bunches prior to extraction,significantly reducing the maximum beam energy density down to within a safe region while still maintaining highly efficient extractions.The main parameters of the pre-kicker are simulated and discussed.
基金supported by the National Key Research and Development Program of China under Grant No.2017YFA0303704National Natural Science Foundation of China under Grants No.61575102,No.61671438,No.61875101,and No.61621064+1 种基金Beijing Natural Science Foundation under Grant No.Z180012Beijing Academy of Quantum Information Sciences under Grant No.Y18G26
文摘For a compact quantum key distribution (QKD) sender for the polarization encoding BB84 protocol, an eavesdropper could take a side-channel attack by measuring the spatial information of photons to infer their polarizations. The possibility of this attack can be reduced by introducing an aperture in the QKD sender, however, the effect of the aperture on the QKD security lacks of quantitative analysis. In this paper, we analyze the mutual information between the actual keys encoded at this QKD sender and the inferred keys at the eavesdropper (Eve), demonstrating the effect of the aperture to eliminate the spatial side-channel information quantitatively. It shows that Eve’s potential on eavesdropping spatial side-channel information is totally dependent on the optical design of the QKD sender, including the source arrangement and the aperture. The height of compact QKD senders with integrated light-emitting diode (LED) arrays could be controlled under several millimeters, showing great potential on applications in portable equipment.
基金supported by the HALF project and the National Key R&D Program Project(2016Y-FA0402000).
文摘Background The Hefei Advanced Light Facility(HALF)will be a VUV and soft X-ray diffraction-limited storage ring(DLSR),and its high density of electron bunches makes the intra-beam scattering(IBS)effect very serious.Methods An IBS module used in the IMPACT code is developed,where the scattering process of IBS is described by the Piwinski model in Monte Carlo sampling.In the IMPACT code with IBS module,the macroparticle beam in storage ring is numerically tracked,including motion under external electromagnetic field and the IBS scattering process.And the long-term tracking results of macroparticle beam are statistically analyzed.Results and conclusions The results of IBS effect in the HALF storage ring studied by this new code are presented.For benchmarking,the IMPACT code with IBS module is compared with the ELEGANT code and a semi-analytic code using Bane’s model,and the results agree well with each other.With various countermeasures,the IBS impact can be controlled to a certain extent,and the expected beam emittance is approximately 59 pm·rad.
基金Supported by NSFC(11475202,11405187)Youth Innovation Promotion Association CAS(2015009)
文摘A new generation of storage ring-based light sources,called diffraction-limited storage rings(DLSRs),with emittance approaching the diffraction limit for multi-keV photons by means of multi-bend achromat lattices,has attracted extensive studies worldwide.Among various DLSR proposals,the hybrid multi-bend achromat concept developed at the European Synchrotron Radiation Facility(ESRF) predicts an effective way of minimizing the emittance while keeping the required chromatic sextupole strengths to an achievable level.For the High Energy Photon Source planned to be built in Beijing,an ESRF-type lattice design consisting of 48 hybrid seven-bend achromats is proposed to reach emittance as low as 60 pm-rad with a circumference of about 1296 m.Sufficient dynamic aperture,allowing vertical on-axis injection,and moderate momentum acceptance are achieved simultaneously for a promising ring performance.