期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Linking Diffractive and Geometrical Optics Surface Scattering at a Fundamental Level 被引量:1
1
作者 Christi Kay Madsen 《Optics and Photonics Journal》 2022年第1期1-17,共17页
Optical surface scattering analyses based on diffractive optics (DO) are typically applied to one surface;however, there is a need for simulating surface scattering losses for devices having many surface interactions ... Optical surface scattering analyses based on diffractive optics (DO) are typically applied to one surface;however, there is a need for simulating surface scattering losses for devices having many surface interactions such as light pipes. Light pipes are often simulated with geometric optics (GO) using ray tracing, where surface scattering is driven by the surface slope distribution. In the DO case, surface scattering analyses depend on the spatial frequency distribution and amplitude as well as wavelength, with the sinusoidal grating as a fundamental basis. A better understanding of the link, or transition, between DO and GO scattering domains would be helpful for efficiently incorporating scattering loss analyses into ray trace simulations. A formula for the root-mean-square (rms) scattered angle width of a sinusoidal reflection grating that depends only on the surface rms slope is derived from the nonparaxial scalar diffraction theory, thereby linking it to GO. The scatter angle’s mean and rms width are evaluated over a range of grating amplitudes and periods using scalar theory and full vector simulations from the COMSOL® wave optic module for a sinusoidal reflection grating. The conditions under which the diffraction-based solution closely approximates the GO solution, as predicted by the rms slope, are identified. Close agreement is shown between the DO and GO solutions for the same surface rms slope scattering loss due to angular filtering near the critical angle of a total internal reflection (TIR) glass-to-air interface. 展开更多
关键词 diffractive optics Geometrical optics Diffraction Gratings Surface Scattering Light Pipes
下载PDF
Simple and universal method in designs of high-efficiency diffractive optical elements for spectrum separation and beam concentration 被引量:2
2
作者 徐文琪 林冬风 +8 位作者 许信 叶佳声 王新柯 冯胜飞 孙文峰 韩鹏 张岩 孟庆波 杨国桢 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期89-95,共7页
Diffractive optical elements(DOEs) with spectrum separation and beam concentration(SSBC) functions have important applications in solar cell systems. With the SSBC DOEs, the sunlight radiation is divided into seve... Diffractive optical elements(DOEs) with spectrum separation and beam concentration(SSBC) functions have important applications in solar cell systems. With the SSBC DOEs, the sunlight radiation is divided into several wave bands so as to be effectively absorbed by photovoltaic materials with different band gaps. A new method is proposed for designing high-efficiency SSBC DOEs, which is physically simple, numerically fast, and universally applicable. The SSBC DOEs are designed by the new design method, and their performances are analyzed by the Fresnel diffraction integral method.The new design method takes two advantages over the previous design method. Firstly, the optical focusing efficiency is heightened by up to 10%. Secondly, focal positions of all the designed wavelengths can be designated arbitrarily and independently. It is believed that the designed SSBC DOEs should have practical applications to solar cell systems. 展开更多
关键词 diffractive optical element spectrum separation and beam concentration optical focusing efficiency solar cell system
下载PDF
A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency 被引量:2
3
作者 叶佳声 王进泽 +3 位作者 黄庆礼 董碧珍 张岩 杨国桢 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期44-49,共6页
In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an opt... In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modern photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems. 展开更多
关键词 diffractive optical element spectrum-splitting and beam-concentration functions thickness optimization algorithm solar cell systems
下载PDF
Realizing high photovoltaic efficiency with parallel multijunction solar cells based on spectrum-splitting and-concentrating diffractive optical element 被引量:1
4
作者 王进泽 黄庆礼 +7 位作者 许信 全宝钢 罗建恒 张岩 叶佳声 李冬梅 孟庆波 杨国桢 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期329-334,共6页
Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employ... Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employed a diffractive optical element (DOE) to split and concentrate the sunlight. A rainbow region and a zero-order diffraction region were generated on the output plane where solar cells with corresponding band gaps were placed. An analytical expression of the light intensity distribution on the output plane of the special DOE was deduced, and the limiting photovoltaic efficiency of such parallel multijunction solar ceils was obtained based on Shockley-Queisser's theory. An efficiency exceeding the Shockley--Queisser limit (33%) can be expected using multijunction solar cells consisting of separately fabricated subcells. The results provide an important alternative approach to realize high photovoltaic efficiency without the need for expensive epitaxial technology widely used in tandem solar cells, thus stimulating the research and application of high efficiency and low cost solar cells. 展开更多
关键词 diffractive optical element SPLIT CONCENTRATION MULTIJUNCTION
下载PDF
Additive manufacturing of precision optics at micro and nanoscale 被引量:3
5
作者 Abolfazl Zolfaghari Tiantong Chen Allen Y Yi 《International Journal of Extreme Manufacturing》 2019年第1期92-109,共18页
This review focuses on recent developments in additive manufacturing(AM)of precision optical devices,particularly devices consisting of components with critical features at the micro-and nanoscale.These include,but ar... This review focuses on recent developments in additive manufacturing(AM)of precision optical devices,particularly devices consisting of components with critical features at the micro-and nanoscale.These include,but are not limited to,microlenses,diffractive optical elements,and photonic devices.However,optical devices with large-size lenses and mirrors are not specifically included as this technology has not demonstrated feasibilities in that category.The review is roughly divided into two slightly separated topics,the first on meso-and microoptics and the second on optics with nanoscale features.Although AM of precision optics is still in its infancy with many unanswered questions,the references cited on this exciting topic demonstrate an enabling technology with almost unlimited possibilities.There are many high quality reviews of AM processes of non-optical components,hence they are not the focus of this review.The main purpose of this review is to start a conversion on optical fabrication based on information about 3D AM methods that has been made available to date,with an ultimate long-term goal of establishing new optical manufacturing methods that are low cost and highly precise with extreme flexibility. 展开更多
关键词 additive manufacturing precision optics MICROLENSES GRATINGS diffractive optical
下载PDF
Spectrum-Splitting Diffractive Optical Element of High Concentration Factor and High Optical Efficiency for Three-Junction Photovoltaics
6
作者 林冬风 全保刚 +8 位作者 张秋琳 张东香 许信 叶佳声 张岩 李冬梅 孟庆波 潘丽 杨国桢 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期64-67,共4页
A spectrum-splitting and beam-concentrating (SSBC) diffractive optical element (DOE) for three-junction pho- tovoltaics (PV) system is designed and fabricated by five-circ/e micro-fabrication. The incident solar... A spectrum-splitting and beam-concentrating (SSBC) diffractive optical element (DOE) for three-junction pho- tovoltaics (PV) system is designed and fabricated by five-circ/e micro-fabrication. The incident solar light is efficiently split into three sub-spectrum ranges and strongly concentrated on the focal plane, which can be di- rectly utilized by suitable spectrum-matching solar cells. The system concentration factor reaches 12x. Moreover, the designed wavelengths (450nm, 550nm and 65Onto) are spatially distributed on the focal plane, in good agree- ment with the theoretical results. The average optical effic/ency of all the cells over the three designed wavelengths is 60.07%. The SSBC DOE with a high concentration factor and a high optical efficiency provides a cost-effective approach to achieve higher PV conversion efficieneies. 展开更多
关键词 of on it Spectrum-Splitting diffractive Optical Element of High Concentration Factor and High Optical Efficiency for Three-Junction Photovoltaics is in for DOE been
下载PDF
Design optimization of highly efficient spectrum-splitting and beam-concentrating diffractive optical element for lateral multijunction solar cells
7
作者 王进泽 叶佳声 +4 位作者 黄庆礼 许信 李冬梅 孟庆波 杨国桢 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期319-323,共5页
Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical effici... Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical efficiency of about 6.8% better than that of the previous design. The optimization of designing high optical efficiency DOEs will pave the way for future designs of high-efficiency, low-cost lateral multijunction solar cells based on such a DOE. 展开更多
关键词 thickness optimization solar cell SPLIT CONCENTRATION diffractive optical element
下载PDF
Design of Diffractive Optical Elements Used for Beam Shaping in the Fresnel Domain
8
作者 FENG Di, YAN Ying-bai, LU Si, TAN Qiao-feng (State Key Lab.of Precis.Measur.Technol.and Instrum.,Dept.of Precis.Instrum.,Tsinghua University,Beijing 100084,CHN) 《Semiconductor Photonics and Technology》 CAS 2003年第2期107-111,共5页
In the Fresnel transform domain, an effective improvement to the conventional iterative algorithm for designing the diffractive optical elements (DOEs) used for spatial beam shaping has been proposed. The algorithm ca... In the Fresnel transform domain, an effective improvement to the conventional iterative algorithm for designing the diffractive optical elements (DOEs) used for spatial beam shaping has been proposed. The algorithm can successfully achieve to design DOEs for beam shaping. Compared with conventional algorithm, this algorithm can provide faster convergence, more powerful ability to overcome local minimum problem and better shaping quality. By computer simulation, the result has shown that the DOEs designed by this algorithm has snch advantages as high uniformity at the main lobe, low profile error and steep edge. 展开更多
关键词 fresnel domain diffractive optical elements beam shaping
下载PDF
Subwavelength Diffractive Optical Elements
9
作者 金国藩 《光学与光电技术》 2006年第5期21-28,共8页
1 Introduction 1.1 Advantages of DOE 1)High diffraction efficiency; 2)Dispersive; 3)More selectivity of designing parameters; 4)More selectivity of primary materials; 5)Can make components miniature,forming array and ... 1 Introduction 1.1 Advantages of DOE 1)High diffraction efficiency; 2)Dispersive; 3)More selectivity of designing parameters; 4)More selectivity of primary materials; 5)Can make components miniature,forming array and integration. 1.2 1.3 megapixel triplet plastic mobile 展开更多
关键词 Design FDTD Subwavelength diffractive Optical Elements PBS LENGTH DOE TARGET
下载PDF
Phase zone photon sieve 被引量:2
10
作者 贾佳 谢常青 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第1期183-188,共6页
A novel diffractive optical element, named phase zone photon sieve (PZPS), is presented. There are three kinds of phase plates in PZPSs: PZPS1, PZPS2, and PZPS3. Each of the PZPSs has its own structure and is made ... A novel diffractive optical element, named phase zone photon sieve (PZPS), is presented. There are three kinds of phase plates in PZPSs: PZPS1, PZPS2, and PZPS3. Each of the PZPSs has its own structure and is made on quartz substrate by etching. The three PZPSs have stronger diffraction peak intensity than a photon sieve (PS) when the margin pinhole and zone line width are kept the same. The PZPS3 can produce a smaller central diffractive spot than the ordinary PS with the same number of zones on the Fresnel zone plate. We have given the design method for and the simulation of PZPS and PS. PZPS has potential applications in optical maskless lithography. 展开更多
关键词 photon sieve Fresnel zone plate diffractive optics
下载PDF
Fresnel incoherent correlation holography with single camera shot 被引量:2
11
作者 Anand Vijayakumar Tomas Katkus +4 位作者 Stefan Lundgaard Denver P.Linklater Elena P.Ivanova Soon Hock Ng Saulius Juodkazis 《Opto-Electronic Advances》 2020年第8期12-22,共11页
Fresnel incoherent correlation holography(FINCH)is a self-interference based super-resolution three-dimensional imaging technique.FINCH in inline configuration requires an active phase modulator to record at least thr... Fresnel incoherent correlation holography(FINCH)is a self-interference based super-resolution three-dimensional imaging technique.FINCH in inline configuration requires an active phase modulator to record at least three phase-shifted camera shots to reconstruct objects without twin image and bias terms.In this study,FINCH is realized using a randomly multiplexed bifocal binary diffractive Fresnel zone lenses fabricated using electron beam lithography.The object space is calibrated by axially scanning a point object along the optical axis and recording the corresponding point spread holograms(PSHs).An object is mounted within the calibrated object space,and the object hologram was recorded under identical experimental conditions used for recording the PSHs.The image of the object at different depths was reconstructed by a cross-correlation between the object hologram and the PSHs.Application potential including bio-medical optics is discussed. 展开更多
关键词 IMAGING HOLOGRAPHY CORRELATION three-dimensional imaging diffractive optics
下载PDF
Complex-valued universal linear transformations and image encryption using spatially incoherent diffractive networks
12
作者 Xilin Yang Md Sadman Sakib Rahman +2 位作者 Bijie Bai Jingxi Li Aydogan Ozcan 《Advanced Photonics Nexus》 2024年第1期76-85,共10页
As an optical processor,a diffractive deep neural network(D2NN)utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing,completing its tasks at the speed... As an optical processor,a diffractive deep neural network(D2NN)utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing,completing its tasks at the speed of light propagation through thin optical layers.With sufficient degrees of freedom,D2NNs can perform arbitrary complex-valued linear transformations using spatially coherent light.Similarly,D2NNs can also perform arbitrary linear intensity transformations with spatially incoherent illumination;however,under spatially incoherent light,these transformations are nonnegative,acting on diffraction-limited optical intensity patterns at the input field of view.Here,we expand the use of spatially incoherent D2NNs to complex-valued information processing for executing arbitrary complex-valued linear transformations using spatially incoherent light.Through simulations,we show that as the number of optimized diffractive features increases beyond a threshold dictated by the multiplication of the input and output space-bandwidth products,a spatially incoherent diffractive visual processor can approximate any complex-valued linear transformation and be used for all-optical image encryption using incoherent illumination.The findings are important for the all-optical processing of information under natural light using various forms of diffractive surface-based optical processors. 展开更多
关键词 optical computing optical networks machine learning diffractive optical networks diffractive neural networks image encryption
下载PDF
Decision-making and control with diffractive optical networks
13
作者 Jumin Qiu Shuyuan Xiao +4 位作者 Lujun Huang Andrey Miroshnichenko Dejian Zhang Tingting Liu Tianbao Yu 《Advanced Photonics Nexus》 2024年第4期36-46,共11页
The ultimate goal of artificial intelligence(AI)is to mimic the human brain to perform decision-making and control directly from high-dimensional sensory input.Diffractive optical networks(DONs)provide a promising sol... The ultimate goal of artificial intelligence(AI)is to mimic the human brain to perform decision-making and control directly from high-dimensional sensory input.Diffractive optical networks(DONs)provide a promising solution for implementing AI with high speed and low power-consumption.Most reported DONs focus on tasks that do not involve environmental interaction,such as object recognition and image classification.By contrast,the networks capable of decision-making and control have not been developed.Here,we propose using deep reinforcement learning to implement DONs that imitate human-level decisionmaking and control capability.Such networks,which take advantage of a residual architecture,allow finding optimal control policies through interaction with the environment and can be readily implemented with existing optical devices.The superior performance is verified using three types of classic games:tic-tac-toe,Super Mario Bros.,and Car Racing.Finally,we present an experimental demonstration of playing tic-tac-toe using the network based on a spatial light modulator.Our work represents a solid step forward in advancing DONs,which promises a fundamental shift from simple recognition or classification tasks to the high-level sensory capability of AI.It may find exciting applications in autonomous driving,intelligent robots,and intelligent manufacturing. 展开更多
关键词 diffractive optical networks optical computing deep learning reinforcement learning
下载PDF
Simultaneous sorting of arbitrary vector structured beams with spin-multiplexed diffractive metasurfaces
14
作者 Xiaoxin Li Rui Feng +9 位作者 Fangkui Sun Yanxia Zhang Qi Jia Donghua Tang Bojian Shi Hang Li Yanyu Gao Wenya Gao Yongyin Cao Weiqiang Ding 《Advanced Photonics Nexus》 2024年第3期89-96,共8页
Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs a... Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs are extremely important.However,the efficient manipulations of a large number of VSBs have simultaneously remained challenging up to now,especially in integrated optical systems.Here,we propose a compact spin-multiplexed diffractive metasurface capable of continuously sorting and detecting arbitrary VSBs through spatial intensity separation.By introducing a diffractive optical neural network with cascaded metasurface systems,we demonstrate arbitrary VSBs sorters that can simultaneously identify Laguerre–Gaussian modes(l=−4 to 4,p=1 to 4),Hermitian–Gaussian modes(m=1 to 4,n=1 to 3),and Bessel–Gaussian modes(l=1 to 12).Such a sorter for arbitrary VSBs could revolutionize applications in integrated and high-dimensional optical communication systems. 展开更多
关键词 vector structured beams diffractive optical neural networks mode sorting polarization-multiplexed metasurfaces.
下载PDF
Multimode diffractive optical neural network
15
作者 Run Sun Tingzhao Fu +3 位作者 Yuyao Huang Wencan Liu Zhenmin Du Hongwei Chen 《Advanced Photonics Nexus》 2024年第2期49-58,共10页
On-chip diffractive optical neural networks(DONNs)bring the advantages of parallel processing and low energy consumption.However,an accurate representation of the optical field’s evolution in the structure cannot be ... On-chip diffractive optical neural networks(DONNs)bring the advantages of parallel processing and low energy consumption.However,an accurate representation of the optical field’s evolution in the structure cannot be provided using the previous diffraction-based analysis method.Moreover,the loss caused by the open boundaries poses challenges to applications.A multimode DONN architecture based on a more precise eigenmode analysis method is proposed.We have constructed a universal library of input,output,and metaline structures utilizing this method,and realized a multimode DONN composed of the structures from the library.On the designed multimode DONNs with only one layer of the metaline,the classification task of an Iris plants dataset is verified with an accuracy of 90%on the blind test dataset,and the performance of the one-bit binary adder task is also validated.Compared to the previous architectures,the multimode DONN exhibits a more compact design and higher energy efficiency. 展开更多
关键词 optical computing mode multiplexing diffraction optical neural network
下载PDF
A new distribution scheme of decryption keys used in optical verification system with multiple-wavelength information 被引量:2
16
作者 牛春晖 张岩 顾本源 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第10期1996-2003,共8页
A new distribution scheme of decryption keys used in optical verification systems is proposed. The encryption procedure is digitally implemented with the use of an iteration algorithm in computer. Three target images ... A new distribution scheme of decryption keys used in optical verification systems is proposed. The encryption procedure is digitally implemented with the use of an iteration algorithm in computer. Three target images corresponding to three wavelengths are encoded into three sets of phase-only masks (POMs) by a special distributing method. These three sets of POMs are assigned to three authorized users as the personal identification. A lensless optical system is used as the verification system. In the verification procedure, every two of the three authorized users can pass the verification procedure cooperatively, but only one user cannot do. Numerical simulation shows that the proposed distribution scheme of decryption keys not only can improve the security level of verification system, but also can bring convenience and flexibility for authorized users. 展开更多
关键词 optical encryption technique multiple-wavelength information diffractive optical system
下载PDF
Diffractive optical elements 75 years on:from micro-optics to metasurfaces 被引量:3
17
作者 Qiang Zhang Zehao He +5 位作者 Zhenwei Xie Qiaofeng Tan Yunlong Sheng Guofan Jin Liangcai Cao Xiaocong Yuan 《Photonics Insights》 2023年第4期43-101,共59页
Diffractive optical elements(DOEs)are intricately designed devices with the purpose of manipulating light fields by precisely modifying their wavefronts.The concept of DOEs has its origins dating back to 1948 when D.G... Diffractive optical elements(DOEs)are intricately designed devices with the purpose of manipulating light fields by precisely modifying their wavefronts.The concept of DOEs has its origins dating back to 1948 when D.Gabor first introduced holography.Subsequently,researchers introduced binary optical elements(BOEs),including computer-generated holograms(CGHs),as a distinct category within the realm of DOEs.This was the first revolution in optical devices.The next major breakthrough in light field manipulation occurred during the early 21st century,marked by the advent of metamaterials and metasurfaces.Metasurfaces are particularly appealing due to their ultra-thin,ultra-compact properties and their capacity to exert precise control over virtually every aspect of light fields,including amplitude,phase,polarization,wavelength/frequency,angular momentum,etc.The advancement of light field manipulation with micro/nano-structures has also enabled various applications in fields such as information acquisition,transmission,storage,processing,and display.In this review,we cover the fundamental science,cutting-edge technologies,and wide-ranging applications associated with micro/nano-scale optical devices for regulating light fields.We also delve into the prevailing challenges in the pursuit of developing viable technology for real-world applications.Furthermore,we offer insights into potential future research trends and directions within the realm of light field manipulation. 展开更多
关键词 diffractive optical elements metasurfaces METAMATERIALS
原文传递
Zone plate design for generating annular-focused beams 被引量:1
18
作者 Yong Chen Lai Wei +3 位作者 Qiang-Qiang Zhang Quan-Ping Fan Zu-Hua Yang Lei-Feng Cao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期250-254,共5页
Annular-focused beams have attracted attention because of their novel properties and applications in optical trapping, high resolution microscopy, and laser-induced periodic surface structuring. Generation of this bea... Annular-focused beams have attracted attention because of their novel properties and applications in optical trapping, high resolution microscopy, and laser-induced periodic surface structuring. Generation of this beam is very important and necessary. In this article, a novel design of zone plate for forming the annular-focused beams is proposed. The design principle is introduced, and the characteristics of zone plate are analyzed by numerical simulation. The result shows that the zone plate can form a monochromatic ring-shaped intensity distribution in the focal plane. And the design method is also generally suitable for designing the other optical elements to generate the annular-focused beams. 展开更多
关键词 zone plate diffractive optical elements annular focused beam laser-induced periolic surface structuring
下载PDF
RECENT PROGRESS IN MULTIFOCAL MULTIPHOTON MICROSCOPY 被引量:1
19
作者 JUNLE QU LIXIN LIU +2 位作者 YONGHONG SHAO HANBEN NIU BRUCE Z.GAO 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2012年第3期41-48,共8页
Multifocal multiphoton microscopy(MMM)has recently become an important tool in biomedicine for performing three-dimensional fastfluorescence imaging.Using various beamsplitting techniques,MMM splits the near-infrared ... Multifocal multiphoton microscopy(MMM)has recently become an important tool in biomedicine for performing three-dimensional fastfluorescence imaging.Using various beamsplitting techniques,MMM splits the near-infrared laser beam into multiple beamlets and produces a multifocal array on the sample for parallel multiphoton excitation and then recordsfluorescence signal from all foci simultaneously with an area array detector,which significantly improves the imaging speed of multiphoton microscopy and allows for high efficiency in use of the excitation light.In this paper,we discuss the features of several MMM setups using different beamsplitting devices,including a Nipkow spinning disk,a microlens array,a set of beamsplitting mirrors,or a diffractive optical element(DOE).In particular,we present our recent work on the development of an MMM using a spatial light modulator(SLM). 展开更多
关键词 Multifocal multiphoton microscopy(MMM) microlens array beamsplitter diffractive optical element(DOE) spatial light modulator(SLM)
下载PDF
Diffraction of an ultrashort pulsed beam with arbitrary polarization state from a volume holographic grating in LiNbO3 crystals
20
作者 王春花 刘立人 +3 位作者 闫爱民 周煜 刘德安 胡志娟 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第1期100-105,共6页
Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crysta... Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crystals. The results indicate that the diffracted intensity distributions in the spectral and temporal domains and the diffraction efficiency of the grating are both changed by the polarization state and spectral bandwidth of the input pulsed beam. A method is given of choosing the grating parameters and input conditions to obtain a large variation range of the spectral bandwidth of the diffracted pulsed beam with an appropriate diffraction efficiency. Our study presents a possibility of using a volume holographic grating recorded in anisotropic materials to shape a broadband ultrashort pulsed beam by modulating its polarization state. 展开更多
关键词 diffraction optics coupled wave theory volume holographic grating ultrashort pulsed beam
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部