The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance an...The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.展开更多
A numerical procedure for hydrodynamic redesign of the conventional vaned diffuser into the low solidity vaned diffuser by means of a real-coded genetic algorithm with Boltzmann, Tournament and Roulette Wheel selectio...A numerical procedure for hydrodynamic redesign of the conventional vaned diffuser into the low solidity vaned diffuser by means of a real-coded genetic algorithm with Boltzmann, Tournament and Roulette Wheel selection is presented. In the first part, an investigation on the relative efficiency of the different real-coded genetic algorithm is carried out on a typical mathematical test function. The real-coded genetic algorithm with Boltzmann selection shows the best optimization performance compared to the Tournament and Roulette Wheel selection. In the second part, an approach to redesign the vaned diffuser profile is introduced. Goal of the optimum design is to search the highest static pressure recovery coefficient and low solidity vaned diffuser. The result of the low solidity vaned diffuser optimum design confirms that the efficiency and optimization performance of the real-coded Boltzmann selection genetic algorithm outperforms the other selection methods. A comparison between the designed low solidity vaned diffuser and original vaned diffuser shows that the diffuser pump with the redesigned low solidity vaned diffuser has the higher static pressure recovery and improved total hydrodynamic performance. In addition, the smaller outlet diameter of designed vaned diffuser tends to a more compact size of diffuser pump compared to the original diffuser pump. The obtained results also demonstrate the real-coded Boltzmann selection genetic algorithm is a promising optimization algorithm for centrifugal pumps design.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51375227,91223201)
文摘The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.
文摘A numerical procedure for hydrodynamic redesign of the conventional vaned diffuser into the low solidity vaned diffuser by means of a real-coded genetic algorithm with Boltzmann, Tournament and Roulette Wheel selection is presented. In the first part, an investigation on the relative efficiency of the different real-coded genetic algorithm is carried out on a typical mathematical test function. The real-coded genetic algorithm with Boltzmann selection shows the best optimization performance compared to the Tournament and Roulette Wheel selection. In the second part, an approach to redesign the vaned diffuser profile is introduced. Goal of the optimum design is to search the highest static pressure recovery coefficient and low solidity vaned diffuser. The result of the low solidity vaned diffuser optimum design confirms that the efficiency and optimization performance of the real-coded Boltzmann selection genetic algorithm outperforms the other selection methods. A comparison between the designed low solidity vaned diffuser and original vaned diffuser shows that the diffuser pump with the redesigned low solidity vaned diffuser has the higher static pressure recovery and improved total hydrodynamic performance. In addition, the smaller outlet diameter of designed vaned diffuser tends to a more compact size of diffuser pump compared to the original diffuser pump. The obtained results also demonstrate the real-coded Boltzmann selection genetic algorithm is a promising optimization algorithm for centrifugal pumps design.