In this paper, internal oxidation kinetics and the diffusion mechanism of oxygen in sintered Cu-Al alloy have been studied by means of scanning electron microscopy,transmission electron microscopy and heat-weighting s...In this paper, internal oxidation kinetics and the diffusion mechanism of oxygen in sintered Cu-Al alloy have been studied by means of scanning electron microscopy,transmission electron microscopy and heat-weighting scales. The results show that the kinetic curves obey the parabolic law in the initial stage and are linear in the late stage.The oxygen atoms are mainly transported in the from of grain boundary diffusion and volume diffusion in the process of internal oxidation. The plastic deformation of Cu matrix around oxide particles increases the probability of [O] atoms moving in accordance with dislocation diffusion mechanism. Meanwhile, the activation energy and diffusion coefficient in the process of internal oxidation are evaluated by means of kinetic method so as to obtain the velocity equations of reacting interface moving in different stage.展开更多
This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied ...This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied a gap-free model using molecular dynamics. Physical quantities such as volume and pressure of the Na-O and Li-O systems exhibit similar behaviors around the thermodynamic ensembles NPT and NVE. However, for the Na2O system, at a minimum temperature value, we observe a range of total energy values;in contrast, for the Li2O system, a minimum energy corresponds to a range of temperatures. Finally, for physicochemical properties, we studied the diffusion coefficient and activation energy of lithium and potassium oxides around their melting temperatures. The order of magnitude of the diffusion coefficients is given by the relation Dli-O >DNa-O for the multiplicity 8*8*8, while for the activation energy, the order is well reversed EaNa-O > EaLi-O.展开更多
Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and coppe...Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.展开更多
A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and ...A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.展开更多
The oxygen distribution and evolution within the oxygen carrier exert significant influence on chemical looping processes.This paper describes the influence of oxygen bulk diffusion within FeVO4 oxygen carrier pellets...The oxygen distribution and evolution within the oxygen carrier exert significant influence on chemical looping processes.This paper describes the influence of oxygen bulk diffusion within FeVO4 oxygen carrier pellets on the chemical looping oxidative propane dehydrogenation(CL-ODH).During CL-ODH,the oxygen concentration at the pellet surface initially decreased and then maintained stable before the final decrease.At the stage with the stable surface oxygen concentration,the reaction showed a stable C3H6 formation rate and high C3H6 selectivity.Therefore,based on Fick’s second law,the oxygen distribution and evolution in the oxygen carrier at this stage were further analyzed.It was found that main reactions of selective oxidation and over-oxidation were controlled by the oxygen bulk diffusion.C3H8 conversion rate kept decreasing during this stage due to the decrease of the oxygen flux caused by the decline of oxygen gradient within the oxygen carrier,while C3H6 selectivity increased due to the decrease of overoxidation.In addition,reaction rates could increase with the propane partial pressure due to the increase of the oxygen gradient within the oxygen carrier until the bulk transfer reached its limit at higher propane partial pressure.This study provides fundamental insights for the diffusion-controlled chemical looping reactions.展开更多
Steel H13 was put in non toxic salt bath with addition of CeO 2 for co diffusion of sulfur, nitrogen and carbon and followed by oxidation treatment. The effect of rare earths on the improvement of wear resistance a...Steel H13 was put in non toxic salt bath with addition of CeO 2 for co diffusion of sulfur, nitrogen and carbon and followed by oxidation treatment. The effect of rare earths on the improvement of wear resistance and high temperature oxidation resistance of steel H13 was studied using scanning electron microscope, energy dispersive spectrometry and X ray diffraction. The results show that compared to the surface treatment without rare earth addition, the treatment with addition of rare earths improves the wear resistance and high temperature resistance to oxidation of steel H13. Under the conditions of 30 N and 2 h, the wear weight loss was decreased by 40%, and the friction coefficient was reduced from 0 25 to 0 22; whereas for 150 N and 0 2 h, the wear weight loss was decreased by 24%, and the friction coefficient was reduced from 0 35 to 0 32. For the oxidation at 700 ℃ and 4 h, the rate of weight gain decreased to only about 1/30 of that without rare earths.展开更多
The rules of diffusion wear and oxidation wear for PCBN cutting tools were analyzed based on thermodynamics theory. Dissolution concentrations in typical normal workpice materials of PCBN tool material at different te...The rules of diffusion wear and oxidation wear for PCBN cutting tools were analyzed based on thermodynamics theory. Dissolution concentrations in typical normal workpice materials of PCBN tool material at different temperature were then calculated. Diffusion reaction rules in high temperature were developed and analyzed using the Gibbs free energy criterion. The machining tests were conducted using the PCBN tools at different cutting speeds of 50, 95,100 and 180 m/min, feed of 0.1, 0.2 and depth of cut of 0.1, 0.8, 1, and 1.5 mm respectively on a PUMA300LM numerically-controlled lathe. It was found that the theoretical results were uniform with the experimental data, and the results will provide useful references for tool material design and selection.展开更多
The phase diagrams of ternary systems involving two metal components and one oxidant are considered first, the limitations to their use is discussed in relation to the high temperature oxidation of binary alloys. Kine...The phase diagrams of ternary systems involving two metal components and one oxidant are considered first, the limitations to their use is discussed in relation to the high temperature oxidation of binary alloys. Kinetic diagrams, which are useful to predict the conditions for the stability of the two mutually insoluble oxides as the external scale, are then calculated on the basis of thermodynamic and kinetic data concerning both the alloys and the oxides, assuming the validity of the parabolic rate law. A combination of the two types of diagrams provides a more detail information about the oxidation behavior of binary alloys. The calculation of the diffusion paths, which relate the oxidant pressure to the composition of the system in terms of the alloy components both in the alloy and in the scale during an initial stage of the reaction in the presence of the parabolic rate law, is finally developed.展开更多
A simple method for preparation of presulfided eggshell CoMoS/γ-Al2O3 catalysts with sharp boundary is developed, through which the eggshell thicknesses of Co and Mo could be easily regulated by controlling the impre...A simple method for preparation of presulfided eggshell CoMoS/γ-Al2O3 catalysts with sharp boundary is developed, through which the eggshell thicknesses of Co and Mo could be easily regulated by controlling the impregnation time. According to the results characterized by EDS, XRD, HRTEM and FT-IR of adsorbed CO, the active component structures, the nature and/or the amount of active sites on the eggshell catalyst are similar to these on the uniform catalyst. The evaluation results of the catalytic performance in selective hydrodesulfurization (HDS) of FCC gasoline show the presence of significant internal diffusion inhibition effect on HDS of S-compounds especially in the uniform catalyst. Compared with uniform catalyst, the eggshell catalyst could remarkably reduce such an internal diffusion inhibition effect due to a shortened diffusion path of the reactants, thus showing higher HDS activity and selectivity.展开更多
In this study,the scale and internal oxidation of hot-rolled ultra-high strength steel sheets were characterized.It was found that both the formation of the scale and the internal oxidation of Si and Mn depended on th...In this study,the scale and internal oxidation of hot-rolled ultra-high strength steel sheets were characterized.It was found that both the formation of the scale and the internal oxidation of Si and Mn depended on the coiling temperature and position of the steel sample on the strip coil.At a relatively high coiling temperature,a large amount of internal oxidation was observed on the samples cut from the middle of the coil.The depth of the internal oxidation zone exceeded 10 μm and a thin iron layer covering the scale was observed in some cases.Pickling and cold-rolling experiments were conducted on selected samples.Scale pickling was found to be greatly delayed by the formation of an iron layer,which frequently resulted in under-pickled defects.In addition,pickling of the entire internal oxidation zone was difficult,except at the grain boundaries,where the degree of internal Si and Mn oxidation was enriched.The surface of the cold-rolled steel sheet was ruined by the remaining oxidation zone in the subsurface of the pickled steel.The internal oxidation of hot-rolled ultra-high strength steel must be precisely controlled to improve the subsequent surface quality of cold-rolled steel.展开更多
The thermodynamic data of pure Ag and Y were calculated. The phase constitution, composition of micro-region and microstructures of Ag-Y alloy after internal oxidation were investigated by X-ray diffractometry(XRD), e...The thermodynamic data of pure Ag and Y were calculated. The phase constitution, composition of micro-region and microstructures of Ag-Y alloy after internal oxidation were investigated by X-ray diffractometry(XRD), energy dispersion spectrometry(EDS) and scanning electron microscopy(SEM). The results show that the internal oxidation behavior of Ag-Y alloy is feasible from the view of thermodynamics. The upper limit of oxygen partial pressure of Ag-Y alloy oxidation is a function of temperature. Two phases (Ag and Y2O3) appear in Ag-Y alloy after the internal oxidation. The surface of Ag-Y alloy is convex because of the volume expansion of oxide in the alloy and the composition of the convex part is Ag. In Ag-Y2O3 sintered bulk Y2O3 particles are distributed inhomogeneously and conglomerated seriously, but they are dispersed uniformly in the Ag matrix after severe plastic deformation.展开更多
Alginate has been widely used in cell microencapsulation and drug delivery systems in the form of gel beads or microcapsules.Although an alternative novel emulsification-internal gelation technology has been establish...Alginate has been widely used in cell microencapsulation and drug delivery systems in the form of gel beads or microcapsules.Although an alternative novel emulsification-internal gelation technology has been established and both the properties and the potential applications of the beads in drug delivery systems have been studied,the mechanism has not been well understood compared with the traditional droplet method(external gelation technology).On the basis of our previous knowledge that the novel technology is composed of complicatedly consecutive processes with multistep diffusion and reaction,and the diffusion of acetic acid across oil/water interface being the prerequisite that determines the occurrence and rate for the reactions and the structures and properties of final produced gel beads,a special emphasis was placed on the diffusion process.With the aid of diffusion modeling and simple experimental design,the diffusion rate constant and diffusion coefficient of acetic acid across oil/water interface were determined to be in the orders of magnitude of 10-6 and 10-16,respectively.This knowledge will be of particular importance in understanding and interpreting the formation,structure of the gel beads and the relationship between the structure and properties and guiding the preparation and quality control of the gel beads.展开更多
The internal oxidation behavior of Pd-40Ag-1RE (RE = Sm, Eu, Gd, Y) alloy wires has been studied in air at 800 °C 1200°C. The dependence of internal oxidation depth ξ on reaction time t can be expressed as ...The internal oxidation behavior of Pd-40Ag-1RE (RE = Sm, Eu, Gd, Y) alloy wires has been studied in air at 800 °C 1200°C. The dependence of internal oxidation depth ξ on reaction time t can be expressed as ξ = Ktn, the reaction index n = 0.50 approximately 0.75. The higher the oxidation temperature is, the larger the n value is. It means that the internal oxidation of wire sampls at high temperature deviates from parabola rule observed on plate sample. The activation energies of the studied alloys range over 120 approximately 160 kJ/mol. The internal oxidation process is controlled by the bulk diffusion of oxygen.展开更多
The internal oxidation behavior of Pd-40Ag-1M(M=Zr,Y)alloy wires has been studied in air at 800—1200℃.The relationship between the internal oxidation depth ξ and the reaction time t can be expressed as ξ= Kt^n,whe...The internal oxidation behavior of Pd-40Ag-1M(M=Zr,Y)alloy wires has been studied in air at 800—1200℃.The relationship between the internal oxidation depth ξ and the reaction time t can be expressed as ξ= Kt^n,where n=0.5—0.75.The higher the temperature,the larger the value of n is.The active elements Zr and Y show different internal oxidation characters.For the alloys eontaining Zr,the oxidation rate along the grain boundaries is about twice as high as that in grains,and“lateral oxidation”exists along the grain boundaries.For the alloys containing Y,the oxidation rates in grains and along the grain boundaries are roughly the same,and there is no“lateral oxidation”along the grain bounda- ries.The activation energies of both alloys are in the range of 120—150kJ/mol.Some prop- erties for oxidized alloys were studied.The mechanisms of the internal oxidation were dis- cussed.展开更多
Diffusion behavior of helium in molybdenum was investigated by means of the in- ternal friction method. An apparent relaxation internal friction peak associated with helium long-range diffusion was observed around 475...Diffusion behavior of helium in molybdenum was investigated by means of the in- ternal friction method. An apparent relaxation internal friction peak associated with helium long-range diffusion was observed around 475 K at a resonant frequency of 56 Hz. In terms of the Gorsky relaxation model and the shift of the peak position with the measurement frequency, the activation energy and pre-exponential factor of the diffusion coefficient of the helium atoms in molybdenum were deduced as 0.63 eV and 6.5 cm2/s, respectively.展开更多
The kinetics of internal oxidation of dilut e Cu-Al alloys, containing up to 2.214% molar fraction Al, was investigated over the temperature range of 1023K to 1273K, and the depth of internal oxidation was measured...The kinetics of internal oxidation of dilut e Cu-Al alloys, containing up to 2.214% molar fraction Al, was investigated over the temperature range of 1023K to 1273K, and the depth of internal oxidation was measured by microscopies. A modified rate equation was derived to describe the kinetics of internal oxidation of Cu-Al alloy plate.Based on the derived equati on, the permeability of oxygen in solid copper was obtained from the internal ox idation measurements. The experimental results show that the depth of the intern al oxidation is a parabolic function of time, there is no evidence for preferent ial diffusion along grain boundaries and an outer layer of pure copper was forme d on the external surface of samples.展开更多
The kinetics of internal oxidation of Cu-Al alloy spheres, containing up to 2.214% mole fraction Al was investigated in the temperature range 1 023 K to 1 273 K, and the depth of internal oxidation was measured in the...The kinetics of internal oxidation of Cu-Al alloy spheres, containing up to 2.214% mole fraction Al was investigated in the temperature range 1 023 K to 1 273 K, and the depth of internal oxidation was measured in the microscopy. A kinetic equation was derived to describe the internal oxidation of Cu-A1 alloy spheres, which was checked experimentally by means of oxidation depth measurements. The results show that the derived equation is exact enough to describe the kinetics of internal oxidation of Cu-Al alloy spheres. Based on this equation and the oxidation depth measurements, the permeability of oxygen in solid copper has been obtained. Investigation also shows that in the process of internal oxidation, there is no evidence for preferential diffusion along grain boundaries.展开更多
Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characte...Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characteristics was calculated in the present investigation. The microstructure and properties of the synthesized Cu/Al2O3 were studied. The results show that high-energy milling can obviously promote internal oxidation of Al in Cu-Al powders in the same solid solubility. At the same milling conditions and internal oxidation parameters, the solid solution of Al in Cu either in low or high amount will result in the poor microstructure and properties of the Cu/Al2O3 composite. Subsequently, when high-energy milling and internal oxidation are synchronously used to prepare the Cu/Al2O3 composite, there should be an appropriate solubility and milling effect for the pre-alloyed powders.展开更多
The kinetics of internal oxidation of Cu-Al alloy cylinders, containing up to 2.214mol% Al, were investigated in the temperature range of 1023 K to 1273 K, and the depth of internal oxidation was measured in the micro...The kinetics of internal oxidation of Cu-Al alloy cylinders, containing up to 2.214mol% Al, were investigated in the temperature range of 1023 K to 1273 K, and the depth of internal oxidation was measured in the microscopy. A kinetic equation was derived to describe the internal oxidation of Cu-Al alloy cylinders. For the internal oxidation of Cu-Al alloys employed in the synthesis of alumina dispersion strengthened copper, the kinetic equation can be simplified. The derived equation was checked experimentally by means of oxidation depth measurements and the results show that the derived equation is exact enough to describe the kinetics of internal oxidation of Cu-Al alloy cylinders. Based on this equation and the oxidation depth measurements, the permeability of oxygen in solid copper was obtained. Investigation also shows that there is no evidence for preferential diffusion along grain boundaries in the process of internal oxidation.展开更多
文摘In this paper, internal oxidation kinetics and the diffusion mechanism of oxygen in sintered Cu-Al alloy have been studied by means of scanning electron microscopy,transmission electron microscopy and heat-weighting scales. The results show that the kinetic curves obey the parabolic law in the initial stage and are linear in the late stage.The oxygen atoms are mainly transported in the from of grain boundary diffusion and volume diffusion in the process of internal oxidation. The plastic deformation of Cu matrix around oxide particles increases the probability of [O] atoms moving in accordance with dislocation diffusion mechanism. Meanwhile, the activation energy and diffusion coefficient in the process of internal oxidation are evaluated by means of kinetic method so as to obtain the velocity equations of reacting interface moving in different stage.
文摘This work is a simulation model with the LAMMPS calculation code of an electrode based on alkali metal oxides (lithium, sodium and potassium) using the Lennard Jones potential. For a multiplicity of 8*8*8, we studied a gap-free model using molecular dynamics. Physical quantities such as volume and pressure of the Na-O and Li-O systems exhibit similar behaviors around the thermodynamic ensembles NPT and NVE. However, for the Na2O system, at a minimum temperature value, we observe a range of total energy values;in contrast, for the Li2O system, a minimum energy corresponds to a range of temperatures. Finally, for physicochemical properties, we studied the diffusion coefficient and activation energy of lithium and potassium oxides around their melting temperatures. The order of magnitude of the diffusion coefficients is given by the relation Dli-O >DNa-O for the multiplicity 8*8*8, while for the activation energy, the order is well reversed EaNa-O > EaLi-O.
基金National Natural Science Foundation of China (50432020)Henan Innovation Project for University Prominent Re- search Talents (2007KYCX008)+3 种基金Henan Education Department Science and Technology Project (2007430004)Henan Plan Project for College Youth Backbone TeacherHenan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation (of023)
文摘Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.
基金Project(50971127)supported by the National Natural Science Foundation of China
文摘A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.
基金the National Key Research and Development Program of China (2021YFA1501302)the National Natural Science Foundation of China (22122808, U20B6002)+1 种基金the Haihe Laboratory of Sustainable Chemical Transformations and the Program of Introducing Talents of Discipline to Universities (BP0618007) for financial supportsupported by the XPLORER PRIZE by Tencent Foundation
文摘The oxygen distribution and evolution within the oxygen carrier exert significant influence on chemical looping processes.This paper describes the influence of oxygen bulk diffusion within FeVO4 oxygen carrier pellets on the chemical looping oxidative propane dehydrogenation(CL-ODH).During CL-ODH,the oxygen concentration at the pellet surface initially decreased and then maintained stable before the final decrease.At the stage with the stable surface oxygen concentration,the reaction showed a stable C3H6 formation rate and high C3H6 selectivity.Therefore,based on Fick’s second law,the oxygen distribution and evolution in the oxygen carrier at this stage were further analyzed.It was found that main reactions of selective oxidation and over-oxidation were controlled by the oxygen bulk diffusion.C3H8 conversion rate kept decreasing during this stage due to the decrease of the oxygen flux caused by the decline of oxygen gradient within the oxygen carrier,while C3H6 selectivity increased due to the decrease of overoxidation.In addition,reaction rates could increase with the propane partial pressure due to the increase of the oxygen gradient within the oxygen carrier until the bulk transfer reached its limit at higher propane partial pressure.This study provides fundamental insights for the diffusion-controlled chemical looping reactions.
文摘Steel H13 was put in non toxic salt bath with addition of CeO 2 for co diffusion of sulfur, nitrogen and carbon and followed by oxidation treatment. The effect of rare earths on the improvement of wear resistance and high temperature oxidation resistance of steel H13 was studied using scanning electron microscope, energy dispersive spectrometry and X ray diffraction. The results show that compared to the surface treatment without rare earth addition, the treatment with addition of rare earths improves the wear resistance and high temperature resistance to oxidation of steel H13. Under the conditions of 30 N and 2 h, the wear weight loss was decreased by 40%, and the friction coefficient was reduced from 0 25 to 0 22; whereas for 150 N and 0 2 h, the wear weight loss was decreased by 24%, and the friction coefficient was reduced from 0 35 to 0 32. For the oxidation at 700 ℃ and 4 h, the rate of weight gain decreased to only about 1/30 of that without rare earths.
基金Funded by the National Natural Science Foundation of China (50705052)
文摘The rules of diffusion wear and oxidation wear for PCBN cutting tools were analyzed based on thermodynamics theory. Dissolution concentrations in typical normal workpice materials of PCBN tool material at different temperature were then calculated. Diffusion reaction rules in high temperature were developed and analyzed using the Gibbs free energy criterion. The machining tests were conducted using the PCBN tools at different cutting speeds of 50, 95,100 and 180 m/min, feed of 0.1, 0.2 and depth of cut of 0.1, 0.8, 1, and 1.5 mm respectively on a PUMA300LM numerically-controlled lathe. It was found that the theoretical results were uniform with the experimental data, and the results will provide useful references for tool material design and selection.
基金Financial supports by the NSFC(China)under the research projects(No.50071058 and No.59725101)by the CAS(China)-CNR(Italy)under an international collaboration agreement are gratefully acknowledged.
文摘The phase diagrams of ternary systems involving two metal components and one oxidant are considered first, the limitations to their use is discussed in relation to the high temperature oxidation of binary alloys. Kinetic diagrams, which are useful to predict the conditions for the stability of the two mutually insoluble oxides as the external scale, are then calculated on the basis of thermodynamic and kinetic data concerning both the alloys and the oxides, assuming the validity of the parabolic rate law. A combination of the two types of diagrams provides a more detail information about the oxidation behavior of binary alloys. The calculation of the diffusion paths, which relate the oxidant pressure to the composition of the system in terms of the alloy components both in the alloy and in the scale during an initial stage of the reaction in the presence of the parabolic rate law, is finally developed.
基金supported by grants from the Major State Basic Research Development Program of China ("973" Program, 2010CB226905)the National Natural Science Foundation of China (Grant Nos. 21006128 and 21106185)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100133120007)the Shandong Provincial Natural Science Foundation of China (ZR2011BQ002)the Fundamental Research Funds for the Central Universities and the Graduate Innovation Project of China University of Petroleum (Grant No. CXZD11-06)
文摘A simple method for preparation of presulfided eggshell CoMoS/γ-Al2O3 catalysts with sharp boundary is developed, through which the eggshell thicknesses of Co and Mo could be easily regulated by controlling the impregnation time. According to the results characterized by EDS, XRD, HRTEM and FT-IR of adsorbed CO, the active component structures, the nature and/or the amount of active sites on the eggshell catalyst are similar to these on the uniform catalyst. The evaluation results of the catalytic performance in selective hydrodesulfurization (HDS) of FCC gasoline show the presence of significant internal diffusion inhibition effect on HDS of S-compounds especially in the uniform catalyst. Compared with uniform catalyst, the eggshell catalyst could remarkably reduce such an internal diffusion inhibition effect due to a shortened diffusion path of the reactants, thus showing higher HDS activity and selectivity.
文摘In this study,the scale and internal oxidation of hot-rolled ultra-high strength steel sheets were characterized.It was found that both the formation of the scale and the internal oxidation of Si and Mn depended on the coiling temperature and position of the steel sample on the strip coil.At a relatively high coiling temperature,a large amount of internal oxidation was observed on the samples cut from the middle of the coil.The depth of the internal oxidation zone exceeded 10 μm and a thin iron layer covering the scale was observed in some cases.Pickling and cold-rolling experiments were conducted on selected samples.Scale pickling was found to be greatly delayed by the formation of an iron layer,which frequently resulted in under-pickled defects.In addition,pickling of the entire internal oxidation zone was difficult,except at the grain boundaries,where the degree of internal Si and Mn oxidation was enriched.The surface of the cold-rolled steel sheet was ruined by the remaining oxidation zone in the subsurface of the pickled steel.The internal oxidation of hot-rolled ultra-high strength steel must be precisely controlled to improve the subsequent surface quality of cold-rolled steel.
基金Project(2006BAE03B03) supported by the National Science and Technology Program of China
文摘The thermodynamic data of pure Ag and Y were calculated. The phase constitution, composition of micro-region and microstructures of Ag-Y alloy after internal oxidation were investigated by X-ray diffractometry(XRD), energy dispersion spectrometry(EDS) and scanning electron microscopy(SEM). The results show that the internal oxidation behavior of Ag-Y alloy is feasible from the view of thermodynamics. The upper limit of oxygen partial pressure of Ag-Y alloy oxidation is a function of temperature. Two phases (Ag and Y2O3) appear in Ag-Y alloy after the internal oxidation. The surface of Ag-Y alloy is convex because of the volume expansion of oxide in the alloy and the composition of the convex part is Ag. In Ag-Y2O3 sintered bulk Y2O3 particles are distributed inhomogeneously and conglomerated seriously, but they are dispersed uniformly in the Ag matrix after severe plastic deformation.
基金Supported by the National Natural Science Foundation of China(No.30472102)the National Basic Research Program ofChina(Nos.2002CB713804and2007CB714305).
文摘Alginate has been widely used in cell microencapsulation and drug delivery systems in the form of gel beads or microcapsules.Although an alternative novel emulsification-internal gelation technology has been established and both the properties and the potential applications of the beads in drug delivery systems have been studied,the mechanism has not been well understood compared with the traditional droplet method(external gelation technology).On the basis of our previous knowledge that the novel technology is composed of complicatedly consecutive processes with multistep diffusion and reaction,and the diffusion of acetic acid across oil/water interface being the prerequisite that determines the occurrence and rate for the reactions and the structures and properties of final produced gel beads,a special emphasis was placed on the diffusion process.With the aid of diffusion modeling and simple experimental design,the diffusion rate constant and diffusion coefficient of acetic acid across oil/water interface were determined to be in the orders of magnitude of 10-6 and 10-16,respectively.This knowledge will be of particular importance in understanding and interpreting the formation,structure of the gel beads and the relationship between the structure and properties and guiding the preparation and quality control of the gel beads.
文摘The internal oxidation behavior of Pd-40Ag-1RE (RE = Sm, Eu, Gd, Y) alloy wires has been studied in air at 800 °C 1200°C. The dependence of internal oxidation depth ξ on reaction time t can be expressed as ξ = Ktn, the reaction index n = 0.50 approximately 0.75. The higher the oxidation temperature is, the larger the n value is. It means that the internal oxidation of wire sampls at high temperature deviates from parabola rule observed on plate sample. The activation energies of the studied alloys range over 120 approximately 160 kJ/mol. The internal oxidation process is controlled by the bulk diffusion of oxygen.
文摘The internal oxidation behavior of Pd-40Ag-1M(M=Zr,Y)alloy wires has been studied in air at 800—1200℃.The relationship between the internal oxidation depth ξ and the reaction time t can be expressed as ξ= Kt^n,where n=0.5—0.75.The higher the temperature,the larger the value of n is.The active elements Zr and Y show different internal oxidation characters.For the alloys eontaining Zr,the oxidation rate along the grain boundaries is about twice as high as that in grains,and“lateral oxidation”exists along the grain boundaries.For the alloys containing Y,the oxidation rates in grains and along the grain boundaries are roughly the same,and there is no“lateral oxidation”along the grain bounda- ries.The activation energies of both alloys are in the range of 120—150kJ/mol.Some prop- erties for oxidized alloys were studied.The mechanisms of the internal oxidation were dis- cussed.
文摘Diffusion behavior of helium in molybdenum was investigated by means of the in- ternal friction method. An apparent relaxation internal friction peak associated with helium long-range diffusion was observed around 475 K at a resonant frequency of 56 Hz. In terms of the Gorsky relaxation model and the shift of the peak position with the measurement frequency, the activation energy and pre-exponential factor of the diffusion coefficient of the helium atoms in molybdenum were deduced as 0.63 eV and 6.5 cm2/s, respectively.
基金Funded by the National High technology"863"Project (No.2002AA331112) the Henan Natural Science Foundation ( No.0122021300)
文摘The kinetics of internal oxidation of dilut e Cu-Al alloys, containing up to 2.214% molar fraction Al, was investigated over the temperature range of 1023K to 1273K, and the depth of internal oxidation was measured by microscopies. A modified rate equation was derived to describe the kinetics of internal oxidation of Cu-Al alloy plate.Based on the derived equati on, the permeability of oxygen in solid copper was obtained from the internal ox idation measurements. The experimental results show that the depth of the intern al oxidation is a parabolic function of time, there is no evidence for preferent ial diffusion along grain boundaries and an outer layer of pure copper was forme d on the external surface of samples.
基金Funded by the Henan Natural Science Foundation (No.0122021300) Henan University of Science and Technology Major Pre-research Foundation(No.2005ZD003).
文摘The kinetics of internal oxidation of Cu-Al alloy spheres, containing up to 2.214% mole fraction Al was investigated in the temperature range 1 023 K to 1 273 K, and the depth of internal oxidation was measured in the microscopy. A kinetic equation was derived to describe the internal oxidation of Cu-A1 alloy spheres, which was checked experimentally by means of oxidation depth measurements. The results show that the derived equation is exact enough to describe the kinetics of internal oxidation of Cu-Al alloy spheres. Based on this equation and the oxidation depth measurements, the permeability of oxygen in solid copper has been obtained. Investigation also shows that in the process of internal oxidation, there is no evidence for preferential diffusion along grain boundaries.
基金supported by the National Natural Science Foundation of China (No.50574075)Program for New Century Excellent Talents in University(No.NCET-05-0873)Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20060700011)
文摘Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characteristics was calculated in the present investigation. The microstructure and properties of the synthesized Cu/Al2O3 were studied. The results show that high-energy milling can obviously promote internal oxidation of Al in Cu-Al powders in the same solid solubility. At the same milling conditions and internal oxidation parameters, the solid solution of Al in Cu either in low or high amount will result in the poor microstructure and properties of the Cu/Al2O3 composite. Subsequently, when high-energy milling and internal oxidation are synchronously used to prepare the Cu/Al2O3 composite, there should be an appropriate solubility and milling effect for the pre-alloyed powders.
文摘The kinetics of internal oxidation of Cu-Al alloy cylinders, containing up to 2.214mol% Al, were investigated in the temperature range of 1023 K to 1273 K, and the depth of internal oxidation was measured in the microscopy. A kinetic equation was derived to describe the internal oxidation of Cu-Al alloy cylinders. For the internal oxidation of Cu-Al alloys employed in the synthesis of alumina dispersion strengthened copper, the kinetic equation can be simplified. The derived equation was checked experimentally by means of oxidation depth measurements and the results show that the derived equation is exact enough to describe the kinetics of internal oxidation of Cu-Al alloy cylinders. Based on this equation and the oxidation depth measurements, the permeability of oxygen in solid copper was obtained. Investigation also shows that there is no evidence for preferential diffusion along grain boundaries in the process of internal oxidation.