Cellular networks are overloaded due to the mobile traffic surge,and mobile social networks(MSNets) can be leveraged for traffic offloading.In this paper,we study the issue of choosing seed users for maximizing the mo...Cellular networks are overloaded due to the mobile traffic surge,and mobile social networks(MSNets) can be leveraged for traffic offloading.In this paper,we study the issue of choosing seed users for maximizing the mobile traffic offloaded from cellular networks.We introduce a gossip-style social cascade(GSC) model to model the epidemic-like information diffusion process in MSNets.For static-case and mobile-case networks,we establish an equivalent view and a temporal mapping of the information diffusion process,respectively.We further prove the submodularity in the information diffusion and propose a greedy algorithm to choose the seed users for traffic offloading,yielding a sub-optimal solution to the NP-hard traffic offloading maximization(TOM) problem.Experiments are carried out to study the offloading performance,illustrating that the greedy algorithm significantly outperforms the heuristic and random algorithms,and user mobility can help further reduce cellular load.展开更多
We present here a brief summary of a National Natural Science Foundation Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". The project focuses on ...We present here a brief summary of a National Natural Science Foundation Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". The project focuses on theoretical investigation of the electronic structures and dynamic processes upon photo-and electric-excitation for molecules and aggregates. We aim to develop reliable methodology to predict the optoelectronic properties of molecular materials related to the electronic excitations and to apply in the experiments. We identify two essential scientific challenges: (i) nature of intramolecular and intermolecular electronic excited states; (ii) theoretical description of the dynamic processes of the coupled motion of electronic excitations and nucleus. We propose the following four subjects of research: (i) linear scaling time-dependent density-functional theory and its application to open shell system; (ii) computational method development of electronic excited state for molecular aggregates; (iii) theoretical investigation of the time evolution of the excited state dynamics; (iv) methods to predict the optoelectronic properties starting from electronic excited state investigation for organic materials and experimental verifications.展开更多
Most conventional aerosol neutralizers are based on radioactive sources, which are controlled by strict regulations restricting their handling, transport, and storage. The TSI 3087 soft X-ray (SXR) neutralizer circu...Most conventional aerosol neutralizers are based on radioactive sources, which are controlled by strict regulations restricting their handling, transport, and storage. The TSI 3087 soft X-ray (SXR) neutralizer circumvents these legal restrictions. The aim of the present work is to compare the performance of a standalone SXR aerosol neutralizer with that of conventional radioactive aerosol neutralizers based on 85Kr (TSI 3077) and 241Am (Grimm 5522) by performing field tests in a real environmental scenario. The results obtained when the SXR neutralizer was connected to a mobility particle sizer spectrometer (MPS), different from the device suggested by the manufacturer, were comparable with those obtained with the use of radioactive aerosol neutralizers. In changing the neutralizer, the particle number concentrations, measured with the MPS connected to the SXR neutralizer, almost remained within the 10% uncertainty bounds for the particle size interval 10-300 nm, when diffusion losses inside the SXR tube were considered. Based on our comparisons, the SXR neutralizer can be regarded as a standalone instrument that could solve the problems associated with legal restrictions on radioactive neutralizers and fulfil the need for a portable instrument for different field test purposes.展开更多
基金supported by the National Basic Research Program of China(973 Program) through grant 2012CB316004the Doctoral Program of Higher Education(SRFDP)+1 种基金Research Grants Council Earmarked Research Grants(RGC ERG) Joint Research Scheme through Specialized Research Fund 20133402140001National Natural Science Foundation of China through grant 61379003
文摘Cellular networks are overloaded due to the mobile traffic surge,and mobile social networks(MSNets) can be leveraged for traffic offloading.In this paper,we study the issue of choosing seed users for maximizing the mobile traffic offloaded from cellular networks.We introduce a gossip-style social cascade(GSC) model to model the epidemic-like information diffusion process in MSNets.For static-case and mobile-case networks,we establish an equivalent view and a temporal mapping of the information diffusion process,respectively.We further prove the submodularity in the information diffusion and propose a greedy algorithm to choose the seed users for traffic offloading,yielding a sub-optimal solution to the NP-hard traffic offloading maximization(TOM) problem.Experiments are carried out to study the offloading performance,illustrating that the greedy algorithm significantly outperforms the heuristic and random algorithms,and user mobility can help further reduce cellular load.
基金the National Natural Science Foundation of China (21290190)
文摘We present here a brief summary of a National Natural Science Foundation Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". The project focuses on theoretical investigation of the electronic structures and dynamic processes upon photo-and electric-excitation for molecules and aggregates. We aim to develop reliable methodology to predict the optoelectronic properties of molecular materials related to the electronic excitations and to apply in the experiments. We identify two essential scientific challenges: (i) nature of intramolecular and intermolecular electronic excited states; (ii) theoretical description of the dynamic processes of the coupled motion of electronic excitations and nucleus. We propose the following four subjects of research: (i) linear scaling time-dependent density-functional theory and its application to open shell system; (ii) computational method development of electronic excited state for molecular aggregates; (iii) theoretical investigation of the time evolution of the excited state dynamics; (iv) methods to predict the optoelectronic properties starting from electronic excited state investigation for organic materials and experimental verifications.
文摘Most conventional aerosol neutralizers are based on radioactive sources, which are controlled by strict regulations restricting their handling, transport, and storage. The TSI 3087 soft X-ray (SXR) neutralizer circumvents these legal restrictions. The aim of the present work is to compare the performance of a standalone SXR aerosol neutralizer with that of conventional radioactive aerosol neutralizers based on 85Kr (TSI 3077) and 241Am (Grimm 5522) by performing field tests in a real environmental scenario. The results obtained when the SXR neutralizer was connected to a mobility particle sizer spectrometer (MPS), different from the device suggested by the manufacturer, were comparable with those obtained with the use of radioactive aerosol neutralizers. In changing the neutralizer, the particle number concentrations, measured with the MPS connected to the SXR neutralizer, almost remained within the 10% uncertainty bounds for the particle size interval 10-300 nm, when diffusion losses inside the SXR tube were considered. Based on our comparisons, the SXR neutralizer can be regarded as a standalone instrument that could solve the problems associated with legal restrictions on radioactive neutralizers and fulfil the need for a portable instrument for different field test purposes.