期刊文献+
共找到116,970篇文章
< 1 2 250 >
每页显示 20 50 100
Solutions and Conditional Lie-Backlund Symmetries of Quasi-linear Diffusion-Reaction Equations 被引量:1
1
作者 ZUO Su-Li QU Chang-Zheng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第1期6-12,共7页
New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends ... New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends the approaches of derivative-dependent functional separation of variables and the invariant subspace. Behavior to some solutions such as blow-up and quenching is also described. 展开更多
关键词 conditional Lie-Backlund symmetry exact solution quasi-linear diffusion-reaction equation
下载PDF
FINITE ELEMENT METHOD FOR SOLVING TWO-DIMENSIONAL DIFFUSION-REACTION EQUATIONS OF BOUNDARY LAYER TYPE IN POROUS CATALYST PELLET
2
作者 潘天舒 孙启文 +1 位作者 房鼎业 朱炳辰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1995年第2期29-41,共13页
In this paper,finite element method(FEM)is used to solve two-dimensional diffu-sion-reaction equations of boundary layer type.This kind of equations are usually too complicatedand diffcult to be solved by applying the... In this paper,finite element method(FEM)is used to solve two-dimensional diffu-sion-reaction equations of boundary layer type.This kind of equations are usually too complicatedand diffcult to be solved by applying the traditional methods used in chemical engineering becauseof the steep gradients of concentration and temperature.But,these difficulties are easy to be over-comed when the FEM is used.The integraded steps of solving this kind of problems by the FEMare presented in this paper.By applying the FEM to the two actual examples,the conclusion can bereached that the FEM has the advantages of simplicity and good accuracy. 展开更多
关键词 FINITE element method diffusion-reaction equation BOUNDARY layer type
下载PDF
Density-Dependent Conformable Space-time Fractional Diffusion-Reaction Equation and Its Exact Solutions 被引量:2
3
作者 Kamyar Hosseini Peyman Mayeli +1 位作者 Ahmet Bekir Ozkan Guner 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第1期1-4,共4页
In this article, a special type of fractional differential equations(FDEs) named the density-dependent conformable fractional diffusion-reaction(DDCFDR) equation is studied. Aforementioned equation has a significant r... In this article, a special type of fractional differential equations(FDEs) named the density-dependent conformable fractional diffusion-reaction(DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the exp(-φ(ε))-expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation. 展开更多
关键词 density-dependent conformable fractional diffusion-reaction equation exp(-Ф(ε) )-expansion method modified Kudryashov method exact solutions
原文传递
Reliability Investigation of BiCGStab and IDR Solvers for the Advection-Diffusion-Reaction Equation
4
作者 Chris Schoutrop Jan ten Thije Boonkkamp Jan van Dijk 《Communications in Computational Physics》 SCIE 2022年第6期156-188,共33页
The reliability of BiCGStab and IDR solvers for the exponential scheme discretization of the advection-diffusion-reaction equation is investigated.The resulting discretization matrices have real eigenvalues.We conside... The reliability of BiCGStab and IDR solvers for the exponential scheme discretization of the advection-diffusion-reaction equation is investigated.The resulting discretization matrices have real eigenvalues.We consider BiCGStab,IDR(S),BiCGStab(L)and various modifications of BiCGStab,where S denotes the dimension of the shadow space and L the degree of the polynomial used in the polynomial part.Several implementations of BiCGStab exist which are equivalent in exact arithmetic,however,not in finite precision arithmetic.The modifications of BiCGStab we consider are;choosing a random shadow vector,a reliable updating scheme,and storing the best intermediate solution.It is shown that the Local Minimal Residual algorithm,a method similar to the“minimize residual”step of BiCGStab,can be interpreted in terms of a time-dependent advection-diffusion-reaction equation with homogeneous Dirichlet boundary conditions for the residual,which plays a key role in the convergence analysis.Due to the real eigenvalues,the benefit of BiCGStab(L)compared to BiCGStab is shown to be modest in numerical experiments.Non-sparse(e.g.uniform random)shadow residual turns out to be essential for the reliability of BiCGStab.The reliable updating scheme ensures the required tolerance is truly achieved.Keeping the best intermediate solution has no significant effect.Recommendation is to modify BiCGStab with a random shadow residual and the reliable updating scheme,especially in the regime of large P´eclet and small Damk¨ohler numbers.An alternative option is IDR(S),which outperforms BiCGStab for problems with strong advection in terms of the number of matrix-vector products.The MATLAB code used in the numerical experiments is available on GitLab:https://gitlab.com/ChrisSchoutrop/krylov-adr,a C++implementation of IDR(S)is available in the Eigen linear algebra library:http://eigen.tuxfamily.org. 展开更多
关键词 BiCGStab IDR shadow residual advection-diffusion-reaction equation
原文传递
Optimization of Identifying Point Pollution Sources for the Convection-Diffusion-Reaction Equations
5
作者 Yujing Yuan Dong Liang 《Advances in Applied Mathematics and Mechanics》 SCIE 2021年第1期1-17,共17页
In this paper,we consider the optimization problem of identifying the pollution sources of convection-diffusion-reaction equations in a groundwater process.The optimization model is subject to a convection-diffusion-r... In this paper,we consider the optimization problem of identifying the pollution sources of convection-diffusion-reaction equations in a groundwater process.The optimization model is subject to a convection-diffusion-reaction equation with pumping point and pollution point sources.We develop a linked optimization and simulation approach combining with the Differential Evolution(DE)optimization algorithm to identify the pumping and injection rates from the data at the observation points.Numerical experiments are taken with injections of constant rates and timedependent variable rates at source points.The problem with one pumping point and two pollution source points is also studied.Numerical results show that the proposed method is efficient.The developed optimized identification approach can be extended to high-dimensional and more complex problems. 展开更多
关键词 Convection-diffusion-reaction equation optimization of identification pumping point pollution source point DE algorithm
原文传递
A Linearized Adaptive Dynamic Diffusion Finite Element Method for Convection-Diffusion-Reaction Equations
6
作者 Shaohong Du Qianqian Hou Xiaoping Xie 《Annals of Applied Mathematics》 2023年第3期323-351,共29页
In this paper,we consider a modified nonlinear dynamic diffusion(DD)method for convection-diffusion-reaction equations.This method is free of stabilization parameters and capable of precluding spurious oscillations.We... In this paper,we consider a modified nonlinear dynamic diffusion(DD)method for convection-diffusion-reaction equations.This method is free of stabilization parameters and capable of precluding spurious oscillations.We develop a reliable and efficient residual-type a posteriori error estimator,which is robust with respect to the diffusivity parameter.Furthermore,we propose a linearized adaptive DD algorithm based on the a posteriori estimator.Finally,we perform numerical experiments to verify the theoretical analysis and the performance of the adaptive algorithm. 展开更多
关键词 Convection-diffusion-reaction equation dynamical diffusion method residualtype a posteriori error estimator adaptive algorithm
原文传递
ENERGY ESTIMATES FOR DELAY DIFFUSION-REACTION EQUATIONS 被引量:3
7
作者 J.A.Ferreira P.M.daSilva 《Journal of Computational Mathematics》 SCIE CSCD 2008年第4期536-553,共18页
In this paper we consider nonlinear delay diffusion-reaction equations with initial and Dirichlet boundary conditions. The behaviour and the stability of the solution of such initial boundary value problems (IBVPs) ... In this paper we consider nonlinear delay diffusion-reaction equations with initial and Dirichlet boundary conditions. The behaviour and the stability of the solution of such initial boundary value problems (IBVPs) are studied using the energy method. Simple numerical methods are considered for the computation of numerical approximations to the solution of the nonlinear IBVPs. Using the discrete energy method we study the stability and convergence of the numerical approximations. Numerical experiments are carried out to illustrate our theoretical results. 展开更多
关键词 Delay diffusion reaction equation Energy method STABILITY Convergence.
原文传递
EXPONENTIAL TIME DIFFERENCING-PADE FINITE ELEMENT METHOD FOR NONLINEAR CONVECTION-DIFFUSION-REACTION EQUATIONS WITH TIME CONSTANT DELAY
8
作者 Haishen Dai Qiumei Huang Cheng Wang 《Journal of Computational Mathematics》 SCIE CSCD 2023年第3期370-394,共25页
In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK ... In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK is used for time integration of the corresponding equation.To overcome a well-known difficulty of numerical instability associated with the computation of the exponential operator,the Padéapproach is used for such an exponential operator approximation,which in turn leads to the corresponding ETD-Padéschemes.An unconditional L^(2) numerical stability is proved for the proposed numerical schemes,under a global Lipshitz continuity assumption.In addition,optimal rate error estimates are provided,which gives the convergence order of O(k^(3)+h^(r))(ETD3-Padé)or O(k^(4)+h^(r))(ETD4-Padé)in the L^(2)norm,respectively.Numerical experiments are presented to demonstrate the robustness of the proposed numerical schemes. 展开更多
关键词 Nonlinear delayed convection diffusion reaction equations ETD-Pad´e scheme Lipshitz continuity L^(2)stability analysis Convergence analysis and error estimate
原文传递
A Formulation of the Porous Medium Equation with Time-Dependent Porosity: A Priori Estimates and Regularity Results
9
作者 Koffi B. Fadimba 《Applied Mathematics》 2024年第10期745-763,共19页
We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de... We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0. 展开更多
关键词 Porous Medium equation POROSITY Saturation equation A Priori Estimates Regularity Results
下载PDF
Some Modified Equations of the Sine-Hilbert Type
10
作者 闫铃娟 刘亚杰 胡星标 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期1-6,共6页
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based... Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived. 展开更多
关键词 BILINEAR equationS equation
下载PDF
An Extended Numerical Method by Stancu Polynomials for Solution of Integro-Differential Equations Arising in Oscillating Magnetic Fields
11
作者 Neşe İşler Acar 《Advances in Pure Mathematics》 2024年第10期785-796,共12页
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b... In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method. 展开更多
关键词 Stancu Polynomials Collocation Method Integro-Differential equations Linear equation Systems Matrix equations
下载PDF
Theoretical study of particle and energy balance equations in locally bounded plasmas
12
作者 Hyun-Su JUN Yat Fung TSANG +1 位作者 Jae Ok YOO Navab SINGH 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期89-98,共10页
In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all pl... In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all plasma within a reactor is completely confined only by the reactor walls.However,in industrial plasma reactors for semiconductor manufacturing,the plasma is partially confined by internal reactor structures.We predict the effect of the open boundary area(A′_(L,eff))and ion escape velocity(u_(i))on electron temperature and density by developing new particle and energy balance equations.Theoretically,we found a low ion escape velocity(u_(i)/u_(B)≈0.2)and high open boundary area(A′_(L,eff)/A_(T,eff)≈0.6)to result in an approximately 38%increase in electron density and an 8%decrease in electron temperature compared to values in a fully bounded reactor.Additionally,we suggest that the velocity of ions passing through the open boundary should exceedω_(pi)λ_(De)under the condition E^(2)_(0)?(Φ/λ_(De))^(2). 展开更多
关键词 particle balance equation energy balance equation low temperature plasmas
下载PDF
Data-Driven Ai-and Bi-Soliton of the Cylindrical Korteweg-de Vries Equation via Prior-Information Physics-Informed Neural Networks
13
作者 田十方 李彪 张钊 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期1-6,共6页
By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by si... By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation. 展开更多
关键词 equation SOLITON CYLINDRICAL
下载PDF
Matrix Riccati Equations in Optimal Control
14
作者 Malick Ndiaye 《Applied Mathematics》 2024年第3期199-213,共15页
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho... In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control. 展开更多
关键词 Optimal Control Matrix Riccati equation Change of Variable
下载PDF
Analytical solutions fractional order partial differential equations arising in fluid dynamics
15
作者 Sidheswar Behera Jasvinder Singh Pal Virdi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第3期458-468,共11页
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio... This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB. 展开更多
关键词 the sine-cosine method He's fractional derivative analytical solution fractional Pade-Ⅱequation fractional generalized Zakharov equation
下载PDF
THE STABILITY OF BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION AROUND THE HYDROSTATIC BALANCE
16
作者 Saiguo XU Zhong TAN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1466-1486,共21页
This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Bouss... This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3). 展开更多
关键词 Boussinesq equations partial dissipation stability DECAY
下载PDF
The Maxwell-Heaviside Equations Explained by the Theory of Informatons
17
作者 Antoine Acke 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1003-1016,共14页
In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitatio... In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitational interaction has been explained by the hypothesis that information carried by informatons is the substance of gravitational fields, i.e. the medium that the interaction in question makes possible. From the idea that “information carried by informatons” is its substance, it has been deduced that—on the macroscopic level—a gravitational field manifests itself as a dual entity, always having a field- and an induction component (Egand Bg) simultaneously created by their common sources. In this article we will mathematically deduce the Maxwell-Heaviside equations from the kinematics of the informatons. These relations describe on the macroscopic level how a gravitational field (Eg, Bg) is generated by whether or not moving masses and how spatial and temporal changes of Egand Bgare related. We show that there is no causal link between Egand Bg. 展开更多
关键词 GRAVITY Gravitational Field Maxwell equations Informatons
下载PDF
THE SMOOTHING EFFECT IN SHARP GEVREY SPACE FOR THE SPATIALLY HOMOGENEOUS NON-CUTOFF BOLTZMANN EQUATIONS WITH A HARDPOTENTIAL
18
作者 刘吕桥 曾娟 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期455-473,共19页
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e... In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates. 展开更多
关键词 Boltzmann equation Gevrey regularity non-cutoff hard potential
下载PDF
Prediction of ILI following the COVID-19 pandemic in China by using a partial differential equation
19
作者 Xu Zhang Yu-Rong Song Ru-Qi Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期118-128,共11页
The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory in... The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease. 展开更多
关键词 partial differential equations INFLUENZA SIS model PREDICTION
下载PDF
Besov Estimates for Sub-Elliptic Equations in the Heisenberg Group
20
作者 Huimin Cheng Feng Zhou 《Advances in Pure Mathematics》 2024年第9期744-758,共15页
In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Be... In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group. 展开更多
关键词 Heisenberg Group Sub-Elliptic equations REGULARITY Besov Spaces
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部