An aqueous solution containing sodium polyacrylate(PAAS) was used in diffusive gradient in thin-films technique(DGT) to measure DGT-labile Ni2+ concentrations.The DGT devices(PAAS DGT) were validated in four ty...An aqueous solution containing sodium polyacrylate(PAAS) was used in diffusive gradient in thin-films technique(DGT) to measure DGT-labile Ni2+ concentrations.The DGT devices(PAAS DGT) were validated in four types of solutions,including synthetic river water containing metal ions with complexing EDTA or that without complexing EDTA,natural river water(Ling River,Jinzhou,China) spiked with Ni2+,and an industrial wastewater (Jinzhou,China).Results show that only free metal ions were measured by PAAS DGT,recovery=97.36% in the solutions containing only free metal ions,recovery=49.62% in a solution with metal/EDTA molar ratio of 2:1 and recovery=0 in the solutions with metal/EDTA molar ratios of 1:1 and 1:2.These indicated that the complexes of Ni-EDTA were DGT-inert.The DGT performance in spiked river water(recovery=18.24%) and in industrial wastewater(recovery=12.25%) were investigated,which indicated that the measurement of metals by this DGT device did not include the humic substances complexed fractions of metals.The binding properties of PAAS DGT for Ni2+ were investigated under different conditions of pH value and ionic strength.Conditional stability constants(lgK) of PAAS-Ni complexes were also evaluated.展开更多
Metal pollution has become an major issue governing the wetland ecosystem health.The southern coastal wetland of the Qiangtang Estuary are facing unusual perturbation due to rapid development along the embayment in re...Metal pollution has become an major issue governing the wetland ecosystem health.The southern coastal wetland of the Qiangtang Estuary are facing unusual perturbation due to rapid development along the embayment in recent decades.This study evaluated the bioavailability of metals(Cu,Pb,Cd,Cr and Zn)in the sediment of the southern coastal wetland of the Qiangtang Es-tuary using diffusive gradients in thin films(DGT)techniques and compared with several methods based on total metal content.The results showed that the contents of Cr,Pb,Cd and Cu in sediment,as detected using DGT,were considerably correlated with the exchangeable fraction and the content in Phragmites australis roots,while a weak correlation was observed for Zn.Therefore,DGT analysis could be used to evaluate the bioavailability and potential risk of Cr,Cd,Pb and Cu for P.australis.Quantitative indices,such as DGT concentration,bioaccumulation in P.australis,geoaccumulation index(Igeo)and potential ecological risk index(RI),revealed that Cd was a major potential ecological risk factor along the southern coast wetland of the Qiantang Estuary,especially in the upstream region,which is potentially more vulnerable to the anthropogenic pollution.展开更多
The developed technique of diffusive gradients in thin film( DGT) has been suggested as a promising tool for evaluation of cadmium( Cd) availability in soils,but there exists considerable debate on its suitability. In...The developed technique of diffusive gradients in thin film( DGT) has been suggested as a promising tool for evaluation of cadmium( Cd) availability in soils,but there exists considerable debate on its suitability. In this study,Cd bioavailability in soils was systemically investigated by comparing this technique with seven traditional methods, including soil solution concentration and six commonly used extraction methods( HAc,EDTA,Na c,NH4Ac,CaCl2 and MgCl2). Two typical plants( wheat and maize) were examined for Cd uptake. Maize was more sensitive to increasing exposure to Cd in soils than wheat when the added amounts of Cd ranged from 3. 5 to 5. 0 mg · kg-1,accompanied by the significant decreases of shoot and root biomasses. Cd concentrations in shoots and roots of two plants increased continuously with increasing levels of Cd in soils. Cd uptake was higher in wheat than that in maize. The bioavailable concentrations of Cd measured by all methods increased nearly linearly with increasing addition of Cd in soils. Positive correlations were observed between various bioavailable indicators of Cd in soils and Cd concentrations in two plants. The extractable Cd by six chemical extractants was considerably higher for maize than for wheat,while the DGT-measured and soil solution concentrations of Cd were lower for maize than for wheat,following the same trend as plant Cd uptake. The results imply that DGT measurement can effectively predict the bioavailable levels of Cd in soil solutions and that it is an ideal tool for prediction of Cd bioavailability in soils.展开更多
The passive sampling technique, diffusive gradients in thin films(DGT) has attracted increasing interests as an in-situ sampler for organic contaminants including per-and polyfluoroalkyl substances(PFAS). However, its...The passive sampling technique, diffusive gradients in thin films(DGT) has attracted increasing interests as an in-situ sampler for organic contaminants including per-and polyfluoroalkyl substances(PFAS). However, its effectiveness has been questioned because of the small effective sampling area(3.1 cm^(2)). In this study, we developed a DGT probe for rapid sampling of eight PFAS in waters and applied it to a water-sediment system. It has a much larger sampling area(27 cm^(2)) and as a result lower method quantification limits(0.15 –0.21 ng/L for one-day deployment and 0.02 – 0.03 ng/L for one-week deployment) and much higher(by > 10 factors) sampling rate(100 m L/day) compared to the standard DGT(piston configuration). The sampler could linearly accumulate PFAS from wastewater, was sensitive enough even for a 24 hr deployment with performance comparable to grab sampling(500m L). The DGT probe provided homogeneous sampling performance along the large exposure area. The use of the probe to investigate distributions of dissolved PFAS around the sediment-water interface was demonstrated. This work, for the first time, demonstrated that the DGT probe is a promising monitoring tool for trace levels of PFAS and a research tool for studying their distribution, migration, and fate in aquatic environments including the sediment-water interface.展开更多
Urban wastewater is one of main sources for the introduction of antibiotics into the environment.Monitoring the concentrations of antibiotics in wastewater is necessary for estimating the amount of antibiotics dischar...Urban wastewater is one of main sources for the introduction of antibiotics into the environment.Monitoring the concentrations of antibiotics in wastewater is necessary for estimating the amount of antibiotics discharged into the environment through urban wastewater treatment systems.In this study,we report a novel diffusive gradient in thin films(DGT)method based on molecularly imprinted polymers(MIPs)for in situ measurement of two typical antibiotics,fluoroquinolones(FQs)and sulfonamides(SAs)in urban wastewater.MIPs show specific adsorption toward their templates and their structural analogs,resulting in the selective uptake of the two target antibiotics during MIP-DGT deployment.The uptake performance of the MIP-DGTs was evaluated in the laboratory and was relatively independent of solution pH(4.0-9.0),ionic strength(1-750 mmol/L),and dissolved organic matter(DOM,0-20 mg/L).MIP-DGT samplers were tested in the effluent of an urban wastewater treatment plant for field trials,where three SA(sulfamethoxazole,sulfapyridine,and trimethoprim)and one FQ(ofloxacin)antibiotics were detected,with concentrations ranging from 25.50 to 117.58 ng/L,which are consistent with the results measured by grab sampling.The total removal efficiency of the antibiotics was 80.1%by the treatment plant.This study demonstrates that MIP-DGT is an effective tool for in situ monitoring of trace antibiotics in complex urban wastewaters.展开更多
Cadmium(Cd)uptake by plants or benthic organisms largely depends on its bioavailability in sediments,so it is necessary to understand Cd bio availability for determining its ecological risks in riverine sediments.Pore...Cadmium(Cd)uptake by plants or benthic organisms largely depends on its bioavailability in sediments,so it is necessary to understand Cd bio availability for determining its ecological risks in riverine sediments.Pore water is easily disturbed during sample collection,indicating that there was a shortage of traditional methods for investigating Cd bio availability.Here,sediment cores were collected from rivers,after which sequential extraction and diffusive gradients in thin films(DGT)method were employed to determine Cd potential bio availability in the sediments and pore water.We found that Cd concentrations measured by DGT were lower than that in pore water profiles,and Cd distribution in various fractions changed remarkably.Pearson correlation analysis showed significant positive correlations between Cd concentrations measured by DGT and total Cd concentrations(r^2=0.76),exchangeable and weak acid soluble fraction(r^2=0.68),ferromanganese fraction(r^2=0.72)and bound organic matter or oxidizable fraction(r^2=0.54).However,the correlation was relatively low between Cd concentrations measured by DGT and that in pore water profiles(r^2=0.26).These results demonstrated that DGT method could provide more accurate information of Cd bio availability in sediment profiles than traditional methods.展开更多
梯度扩散薄膜技术(Dffusive grdients in thin-films,DGT)是一种新的原位被动采样技术,可以高分辨地测定水体、土壤和沉积物中重金属的生物有效态,近年来在水环境领域中得到了广泛应用。本文根据文献、资料分析,介绍了DGT装置、基本原理...梯度扩散薄膜技术(Dffusive grdients in thin-films,DGT)是一种新的原位被动采样技术,可以高分辨地测定水体、土壤和沉积物中重金属的生物有效态,近年来在水环境领域中得到了广泛应用。本文根据文献、资料分析,介绍了DGT装置、基本原理,扩散相和结合相的发展,展望了DGT技术的发展前景。重点综述DGT技术在评价沉积物环境中重金属生物有效性的研究进展,并认为DGT技术为研究沉积物重金属生物有效性提供了快速高效的方法,为水环境中沉积物-水界面重金属迁移转化研究提供了强有力的技术支撑。展开更多
采集我国15个省份的耕作土壤进行盆栽试验,通过外源添加不同浓度梯度的Pb并种植小白菜,比较梯度薄膜扩散技术(Diffusive gradients in thin-films,DGT)与传统化学方法(土壤溶液法、EDTA法、HAc法、CaCl_2法和全量法)评价土壤中Pb生物有...采集我国15个省份的耕作土壤进行盆栽试验,通过外源添加不同浓度梯度的Pb并种植小白菜,比较梯度薄膜扩散技术(Diffusive gradients in thin-films,DGT)与传统化学方法(土壤溶液法、EDTA法、HAc法、CaCl_2法和全量法)评价土壤中Pb生物有效性。简单回归分析表明,各评价方法测定的土壤Pb含量与小白菜Pb含量都呈显著相关关系,但DGT技术相关性(R^2=0.97)最高。通过逐步多元线性回归分析,融合土壤pH值、有机碳(OC)含量、阳离子交换量(CEC)、粘粒含量等土壤基本理化性质,建立多元回归模型,结果表明:各传统评价方法融合了pH值、OC含量等土壤性质,R^2较对应的简单回归分析有所提高,都能用于评价土壤Pb的生物有效性,但通过DGT技术所构建的模型方程(R^2=0.97,p<0.01)几乎不受土壤性质的影响,且较传统化学方法相关性更高,因此,DGT技术是一种可以用于评价土壤中Pb生物性的较优方法。展开更多
文摘An aqueous solution containing sodium polyacrylate(PAAS) was used in diffusive gradient in thin-films technique(DGT) to measure DGT-labile Ni2+ concentrations.The DGT devices(PAAS DGT) were validated in four types of solutions,including synthetic river water containing metal ions with complexing EDTA or that without complexing EDTA,natural river water(Ling River,Jinzhou,China) spiked with Ni2+,and an industrial wastewater (Jinzhou,China).Results show that only free metal ions were measured by PAAS DGT,recovery=97.36% in the solutions containing only free metal ions,recovery=49.62% in a solution with metal/EDTA molar ratio of 2:1 and recovery=0 in the solutions with metal/EDTA molar ratios of 1:1 and 1:2.These indicated that the complexes of Ni-EDTA were DGT-inert.The DGT performance in spiked river water(recovery=18.24%) and in industrial wastewater(recovery=12.25%) were investigated,which indicated that the measurement of metals by this DGT device did not include the humic substances complexed fractions of metals.The binding properties of PAAS DGT for Ni2+ were investigated under different conditions of pH value and ionic strength.Conditional stability constants(lgK) of PAAS-Ni complexes were also evaluated.
基金the Natural Science Foun-dation of China(No.41776119)Zhejiang Provincial Natural Science Foundation of China(No.LY15D060004)for the financial support.
文摘Metal pollution has become an major issue governing the wetland ecosystem health.The southern coastal wetland of the Qiangtang Estuary are facing unusual perturbation due to rapid development along the embayment in recent decades.This study evaluated the bioavailability of metals(Cu,Pb,Cd,Cr and Zn)in the sediment of the southern coastal wetland of the Qiangtang Es-tuary using diffusive gradients in thin films(DGT)techniques and compared with several methods based on total metal content.The results showed that the contents of Cr,Pb,Cd and Cu in sediment,as detected using DGT,were considerably correlated with the exchangeable fraction and the content in Phragmites australis roots,while a weak correlation was observed for Zn.Therefore,DGT analysis could be used to evaluate the bioavailability and potential risk of Cr,Cd,Pb and Cu for P.australis.Quantitative indices,such as DGT concentration,bioaccumulation in P.australis,geoaccumulation index(Igeo)and potential ecological risk index(RI),revealed that Cd was a major potential ecological risk factor along the southern coast wetland of the Qiantang Estuary,especially in the upstream region,which is potentially more vulnerable to the anthropogenic pollution.
基金National Natural Science Foundation of China(No.41001334)Fundamental Research Funds for the Central Universities,China(No.2009B00814)+1 种基金the Project of Knowledge Innovation for the 3rd period,the Chinese Academy of Sciences(No.KZCX2-YW-JS304)Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘The developed technique of diffusive gradients in thin film( DGT) has been suggested as a promising tool for evaluation of cadmium( Cd) availability in soils,but there exists considerable debate on its suitability. In this study,Cd bioavailability in soils was systemically investigated by comparing this technique with seven traditional methods, including soil solution concentration and six commonly used extraction methods( HAc,EDTA,Na c,NH4Ac,CaCl2 and MgCl2). Two typical plants( wheat and maize) were examined for Cd uptake. Maize was more sensitive to increasing exposure to Cd in soils than wheat when the added amounts of Cd ranged from 3. 5 to 5. 0 mg · kg-1,accompanied by the significant decreases of shoot and root biomasses. Cd concentrations in shoots and roots of two plants increased continuously with increasing levels of Cd in soils. Cd uptake was higher in wheat than that in maize. The bioavailable concentrations of Cd measured by all methods increased nearly linearly with increasing addition of Cd in soils. Positive correlations were observed between various bioavailable indicators of Cd in soils and Cd concentrations in two plants. The extractable Cd by six chemical extractants was considerably higher for maize than for wheat,while the DGT-measured and soil solution concentrations of Cd were lower for maize than for wheat,following the same trend as plant Cd uptake. The results imply that DGT measurement can effectively predict the bioavailable levels of Cd in soil solutions and that it is an ideal tool for prediction of Cd bioavailability in soils.
基金supported by the Key Deployment Project of Centre for Ocean Mega-Research of Science, Chinese Academy of Sciences (No. COMS2019J08)the Guangzhou Municipal Science and Technology Project (No. 201904010291)+1 种基金National Natural Science Foundation of China (No. 21806042)Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety (No. 2019B030301008)。
文摘The passive sampling technique, diffusive gradients in thin films(DGT) has attracted increasing interests as an in-situ sampler for organic contaminants including per-and polyfluoroalkyl substances(PFAS). However, its effectiveness has been questioned because of the small effective sampling area(3.1 cm^(2)). In this study, we developed a DGT probe for rapid sampling of eight PFAS in waters and applied it to a water-sediment system. It has a much larger sampling area(27 cm^(2)) and as a result lower method quantification limits(0.15 –0.21 ng/L for one-day deployment and 0.02 – 0.03 ng/L for one-week deployment) and much higher(by > 10 factors) sampling rate(100 m L/day) compared to the standard DGT(piston configuration). The sampler could linearly accumulate PFAS from wastewater, was sensitive enough even for a 24 hr deployment with performance comparable to grab sampling(500m L). The DGT probe provided homogeneous sampling performance along the large exposure area. The use of the probe to investigate distributions of dissolved PFAS around the sediment-water interface was demonstrated. This work, for the first time, demonstrated that the DGT probe is a promising monitoring tool for trace levels of PFAS and a research tool for studying their distribution, migration, and fate in aquatic environments including the sediment-water interface.
基金We thank the financial support of National Natural Science Foundation of China(Grant No.21577010)Dalian Municipal Fund for High-level(Leading)Professionals(No.2015R011)Fundamental Research Funds for the Central Universities(No.DUT18LAB14).
文摘Urban wastewater is one of main sources for the introduction of antibiotics into the environment.Monitoring the concentrations of antibiotics in wastewater is necessary for estimating the amount of antibiotics discharged into the environment through urban wastewater treatment systems.In this study,we report a novel diffusive gradient in thin films(DGT)method based on molecularly imprinted polymers(MIPs)for in situ measurement of two typical antibiotics,fluoroquinolones(FQs)and sulfonamides(SAs)in urban wastewater.MIPs show specific adsorption toward their templates and their structural analogs,resulting in the selective uptake of the two target antibiotics during MIP-DGT deployment.The uptake performance of the MIP-DGTs was evaluated in the laboratory and was relatively independent of solution pH(4.0-9.0),ionic strength(1-750 mmol/L),and dissolved organic matter(DOM,0-20 mg/L).MIP-DGT samplers were tested in the effluent of an urban wastewater treatment plant for field trials,where three SA(sulfamethoxazole,sulfapyridine,and trimethoprim)and one FQ(ofloxacin)antibiotics were detected,with concentrations ranging from 25.50 to 117.58 ng/L,which are consistent with the results measured by grab sampling.The total removal efficiency of the antibiotics was 80.1%by the treatment plant.This study demonstrates that MIP-DGT is an effective tool for in situ monitoring of trace antibiotics in complex urban wastewaters.
基金supported by the Youth Innovation Promotion Association CAS(Wenzhong Tang,2017059)the National Natural Science Foundation of China(No.41877368)
文摘Cadmium(Cd)uptake by plants or benthic organisms largely depends on its bioavailability in sediments,so it is necessary to understand Cd bio availability for determining its ecological risks in riverine sediments.Pore water is easily disturbed during sample collection,indicating that there was a shortage of traditional methods for investigating Cd bio availability.Here,sediment cores were collected from rivers,after which sequential extraction and diffusive gradients in thin films(DGT)method were employed to determine Cd potential bio availability in the sediments and pore water.We found that Cd concentrations measured by DGT were lower than that in pore water profiles,and Cd distribution in various fractions changed remarkably.Pearson correlation analysis showed significant positive correlations between Cd concentrations measured by DGT and total Cd concentrations(r^2=0.76),exchangeable and weak acid soluble fraction(r^2=0.68),ferromanganese fraction(r^2=0.72)and bound organic matter or oxidizable fraction(r^2=0.54).However,the correlation was relatively low between Cd concentrations measured by DGT and that in pore water profiles(r^2=0.26).These results demonstrated that DGT method could provide more accurate information of Cd bio availability in sediment profiles than traditional methods.
文摘梯度扩散薄膜技术(Dffusive grdients in thin-films,DGT)是一种新的原位被动采样技术,可以高分辨地测定水体、土壤和沉积物中重金属的生物有效态,近年来在水环境领域中得到了广泛应用。本文根据文献、资料分析,介绍了DGT装置、基本原理,扩散相和结合相的发展,展望了DGT技术的发展前景。重点综述DGT技术在评价沉积物环境中重金属生物有效性的研究进展,并认为DGT技术为研究沉积物重金属生物有效性提供了快速高效的方法,为水环境中沉积物-水界面重金属迁移转化研究提供了强有力的技术支撑。
文摘采集我国15个省份的耕作土壤进行盆栽试验,通过外源添加不同浓度梯度的Pb并种植小白菜,比较梯度薄膜扩散技术(Diffusive gradients in thin-films,DGT)与传统化学方法(土壤溶液法、EDTA法、HAc法、CaCl_2法和全量法)评价土壤中Pb生物有效性。简单回归分析表明,各评价方法测定的土壤Pb含量与小白菜Pb含量都呈显著相关关系,但DGT技术相关性(R^2=0.97)最高。通过逐步多元线性回归分析,融合土壤pH值、有机碳(OC)含量、阳离子交换量(CEC)、粘粒含量等土壤基本理化性质,建立多元回归模型,结果表明:各传统评价方法融合了pH值、OC含量等土壤性质,R^2较对应的简单回归分析有所提高,都能用于评价土壤Pb的生物有效性,但通过DGT技术所构建的模型方程(R^2=0.97,p<0.01)几乎不受土壤性质的影响,且较传统化学方法相关性更高,因此,DGT技术是一种可以用于评价土壤中Pb生物性的较优方法。