In this paper, we obtained three dimensional digital cores using X-ray CT to describe the rock microstructure and applied the open morphology algorithm to simulate oil and formation water distribution in the pore spac...In this paper, we obtained three dimensional digital cores using X-ray CT to describe the rock microstructure and applied the open morphology algorithm to simulate oil and formation water distribution in the pore space at different water saturations during the oil-displacing water flood process. The resistivity, formation factor, and resistivity index of rocks were calculated using the finite element method (FEM) and we studied the effect of rock wettability on electrical properties. The numerical simulation results indicate that the simulated formation factor and resistivity index of the water wet rock agrees well with experiments over the whole range of water saturation and extends the traditional resistivity experiment. The rock wettablilty has a large influence on the rock resistivity index. The resistivity and saturation exponent of oil wet rock are obviously larger than three of water wet rock.展开更多
The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Lo...The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.展开更多
A 3-D digital core describes the pore space microstructure of rocks. An X-ray micro CT scan is the most accurate and direct but costly method to obtain a 3-D digital core. In this study, we propose a hybrid method whi...A 3-D digital core describes the pore space microstructure of rocks. An X-ray micro CT scan is the most accurate and direct but costly method to obtain a 3-D digital core. In this study, we propose a hybrid method which combines sedimentation simulation and simulated annealing (SA) method to generate 3-D digital cores based on 2-D images of rocks. The method starts with the sedimentation simulation to build a 3-D digital core, which is the initial configuration for the SA method. We update the initial digital core using the SA method to match the auto-correlation function of the 2-D rock image and eventually build the final 3-D digital core. Compared with the typical SA method, the hybrid method has significantly reduced the computation time. Local porosity theory is applied to quantitatively compare the reconstructed 3-D digital cores with the X-ray micro CT 3-D images. The results indicate that the 3-D digital cores reconstructed by the hybrid method have homogeneity and geometric connectivity similar to those of the X-ray micro CT image. The formation factors and permeabilities of the reconstructed 3-D digital cores are estimated using the finite element method (FEM) and lattice Boltzmann method (LBM), respectively. The simulated results are in good agreement with the experimental measurements. Comparison of the simulation results suggests that the digital cores reconstructed by the hybrid method more closely reflect the true transport properties than the typical SA method alone.展开更多
The rock uniaxial compressive strength(UCS)is the basic parameter for support designs in underground engineering.In particular,the rock UCS should be obtained rapidly for underground engineering with complex geologica...The rock uniaxial compressive strength(UCS)is the basic parameter for support designs in underground engineering.In particular,the rock UCS should be obtained rapidly for underground engineering with complex geological conditions,such as soft rock,fracture areas,and high stress,to adjust the excavation and support plan and ensure construction safety.To solve the problem of obtaining real-time rock UCS at engineering sites,a rock UCS forecast idea is proposed using digital core drilling.The digital core drilling tests and uniaxial compression tests are performed based on the developed rock mass digital drilling system.The results indicate that the drilling parameters are highly responsive to the rock UCS.Based on the cutting and fracture characteristics of the rock digital core drilling,the mechanical analysis of rock cutting provides the digital core drilling strength,and a quantitative relationship model(CDP-UCS model)for the digital core drilling parameters and rock UCS is established.Thus,the digital core drilling-based rock UCS forecast method is proposed to provide a theoretical basis for continuous and quick testing of the surrounding rock UCS.展开更多
The conventional digital core models are usually small in size and have difficulty in representing the complex structures of heterogeneous rocks;Therefore,the parameters of simulated rock physics are difficult to be r...The conventional digital core models are usually small in size and have difficulty in representing the complex structures of heterogeneous rocks;Therefore,the parameters of simulated rock physics are difficult to be referenced.In this study,we propose a feasible simulation method for obtaining multi-scale and multi-component digital cores based on three types of sandstone samples.In the proposed method,the plug and subplug samples are scanned via micro-computed tomography at different resolutions.Furthermore,the images are precisely registered using the proposed hybrid image registration method.In case of high-resolution images,the traditional segmentation method is used to segment the cores into pores and minerals.Subsequently,we established the relations between the gray values and the porosity/mineral content in case of the low-resolution images based on the registered domains and the relation curves were applied to the segmentation of the low-resolution images.The core images constitute the multi-scale and multi-component digital core models after segmentation.Further,the elastic properties of the three samples were simulated at both fine and coarse scales based on the multi-scale and multi-component digital core models,and four component models were considered.The results show that the multi-scale and multi-component digital core models can overcome the representative limits of the conventional digital core models and accurately characterize pores and minerals at different scales.The numerical results of the elastic modulus are more representative at large scales,and considerably reliable results can be obtained by appropriately considering the minerals.展开更多
Diffusion is an important mass transfer mode of tight sandstone gas. Since nano-pores are extensively developed in the interior of tight sandstone, a considerable body of research indicates that the type of diffusion ...Diffusion is an important mass transfer mode of tight sandstone gas. Since nano-pores are extensively developed in the interior of tight sandstone, a considerable body of research indicates that the type of diffusion is mainly molecular diffusion based on Fick's law. However, accurate modeling and understanding the physics of gas transport phenomena in nanoporous media is still a challenge for researchers and traditional investigation(analytical and experimental methods) have many limitations in studying the generic behavior. In this paper, we used Nano-CT to observe the pore structures of samples of the tight sandstone of western of Sichuan. Combined with advanced image processing technology, threedimensional distributions of the nanometer-sized pores were reconstructed and a tight sandstone digital core model was built, as well the pore structure parameters were analyzed quantitatively. Based on the digital core model, the diffusion process of methane molecules from a higher concentration area to a lower concentration area was simulated by a finite volume method. Finally, the reservoir's concentration evolution was visualized and the intrinsic molecular diffusivity tensor which reflects the diffusion capabilities of this rock was calculated. Through comparisons, we found that our calculated result was in good agreement with other empirical results. This study provides a new research method for tight sandstone digital rock physics. It is a foundation for future tight sandstone gas percolation theory and numerical simulation research.展开更多
Microscopic seepage characteristics are critical for the evaluation of tight sandstone reservoirs.In this study,a digital core approach integrating microscopic seepage simulation and CT scanning was developed to chara...Microscopic seepage characteristics are critical for the evaluation of tight sandstone reservoirs.In this study,a digital core approach integrating microscopic seepage simulation and CT scanning was developed to characterize microscopic seepage and fracture effectiveness(the ratio of micro-fractures that contributes to fluid flow)of tight sandstones.Numerical simulations were carried out for characterizations of tight sandstones.The results show that the axial permeability of the investigated cylindrical tight sandstone from Junggar Basin in China is 0.460μm~2,while the radial permeability is 0.3723μm~2,and the axial and radial effective fracture ratios are 0.4387 and 0.4806,respectively,indicating that cracks are not fully developed and the connectivity between micro-cracks is poor.Directional permeability that is difficult to measure by laboratory experiments can be obtained readily using the proposed method in this paper.The results provide important information for improving the exploration and development of tight sandstone reservoirs.展开更多
Digital core models reconstructed using X-ray tomography(X-CT)enable the quantitative characterization of the pore structure in three dimensions(3D)and the numerical simulation of petrophysics.When the X-CT images acc...Digital core models reconstructed using X-ray tomography(X-CT)enable the quantitative characterization of the pore structure in three dimensions(3D)and the numerical simulation of petrophysics.When the X-CT images accurately reflect the micro structures of core samples,the greyscale threshold in the image segmentation determines the accuracy of digital cores and the simulated petrophysical properties.Therefore,it is vital to investigate the comparison parameter for determining the key greyscale threshold and the criterion to describe the accuracy of the segmentation.Representative coquina digital core models from X-CT are used in this work to study the impact of grayscale threshold on the porosity,pore percolation,connectivity and electrical resistivity of the pore scale model and these simulations are calculated by Minkowski functions,component labeling and fi nite element method,respectively,to quantify the pore structure and simulate electrical resistivity.Results showed that the simulated physical properties of the digital cores,varied with the gradual increase of the greyscale threshold.Among the four parameters related to the threshold,the porosity was most sensitive and chose as the comparison parameter to judge the accuracy of the greyscale threshold.The variations of the threshold change the micro pore structures,and then the electrical resistivity.When the porosity of the digital core model is close to the experimental porosity,the simulated porosity exponent matches the experimental porosity exponents well.The good agreement proved that the porosity is the critical comparison parameter to describe the accuracy of image segmentation.The criterion is that the porosity of the digital core after segmentation should be close to the experimental porosity.展开更多
In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for...In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for a fully convolutional neural networkmodel. This model is used to reconstruct the three-dimensional (3D) digital core of Bereasandstone based on a small number of CT images. The Hamming distance together with theMinkowski functions for porosity, average volume specifi c surface area, average curvature,and connectivity of both the real core and the digital reconstruction are used to evaluate theaccuracy of the proposed method. The results show that the reconstruction achieved relativeerrors of 6.26%, 1.40%, 6.06%, and 4.91% for the four Minkowski functions and a Hammingdistance of 0.04479. This demonstrates that the proposed method can not only reconstructthe physical properties of real sandstone but can also restore the real characteristics of poredistribution in sandstone, is the ability to which is a new way to characterize the internalmicrostructure of rocks.展开更多
Altered igneous reservoirs have low porosity and permeability,compact structure and certain heterogeneity.A simple digital core with certain generality and multi-parameter constraints can be con-structed to characteri...Altered igneous reservoirs have low porosity and permeability,compact structure and certain heterogeneity.A simple digital core with certain generality and multi-parameter constraints can be con-structed to characterize the microscopic pore structure and mineral composition.In this paper,based on core X-ray,CT images and whole-rock mineral analysis,threshold segmentation of mass content and grayscale distribution of various minerals in different lithologies of igneous rocks in the buried hill of Huizhou depression is carried out to construct digital core of altered igneous rocks.The results show that after converting the mineral mass content into volume content,the minerals of altered igneous rocks in Huizhou depression can be classified into components.According to the range of grayscale value,components can be divided into six parts.Due to the difference of the content of components in different lithologies of igneous rocks,differentiated grayscale threshold segmentation is needed to obtain the digital core for a single lithology.The final digital core generation process includes two steps:building a single component digital core,and stacking and combining.This kind of universal digital core model can support the subsequent pore scale numerical simulation and comprehensive rock physics research.展开更多
Two-phase flow in two digital cores is simulated by the color-gradient lattice Boltzmann method.This model can be applied totwo-phase flow with high-density ratio(on order of 1000).The first digital core is an artific...Two-phase flow in two digital cores is simulated by the color-gradient lattice Boltzmann method.This model can be applied totwo-phase flow with high-density ratio(on order of 1000).The first digital core is an artificial sandstone core,and itsthree-dimensional gray model is obtained by Micro-CT scanning.The gray scale images are segmented into discrete phases(solid particles and pore space) by the Otsu algorithm.The second one is a digital core of shale,which is reconstructed usingMarkov Chain Monte Carlo method with segmented SEM scanning image as input.The wettability of solid wall and relativepermeability of a cylindrical tube are simulated to verify the model.In the simulations of liquid and gas two phase flow in digital cores,density ratios of 100,200,500 and 1000 between liquid and gas are chosen.Based on the gas distribution in the digital core at different times,it is found that the fingering phenomenon is more salient at high density ratio.With the density ratioincreasing,the displacement efficiency decreases.Besides,due to numerous small pores in the shale,the displacement efficiency is over 20% less than that in the artificial sandstone and the difference is even about 30% when density ratio is greaterthan 500.As the density ratio increases,the gas saturation decreases in big pores,and even reaches zero in some small pores orbig pores with small throats.Residual liquid mainly distributes in the small pores and the edge of big pores due to the wettability of liquid.Liquid recovery can be enhanced effectively by decreasing its viscosity.展开更多
Effective medium methods for the attribution of micro-structures to macro elastic properties of shales are important for the prediction of sweet spots in the shale-gas production.With X-ray micro-computed tomography(X...Effective medium methods for the attribution of micro-structures to macro elastic properties of shales are important for the prediction of sweet spots in the shale-gas production.With X-ray micro-computed tomography(XMCT),the micro-structures of shale core samples from Longmaxi Formation are visualized and characterized by 3D digital images.As an efficient alternative to conventional effective medium methods for estimating elastic properties,we propose a consistent workflow of lattice spring modeling(LSM)to emulate the digital cores using three types of lattices.Particular attention is paid to investigate the effective Young’s moduli,Poisson’s ratios,and preferred orientations,by uniaxial compression tests along two directions.Within elastic deformation,the impact of lattice arrangements on the anisotropy is even more than those of stress disturbances and micro-structural features.Compared with analytical approximations and theoretical predictions,the LSM numerical scheme shows general applicability for heterogeneous porous rocks.展开更多
Scattering attenuation in short wavelengths has long been interesting to geophysicists. Ultrasonic coda waves, observed as the tail portion of ultrasonic wavetrains in laboratory ultrasonic measurements, are important...Scattering attenuation in short wavelengths has long been interesting to geophysicists. Ultrasonic coda waves, observed as the tail portion of ultrasonic wavetrains in laboratory ultrasonic measurements, are important for such studies where ultrasonic waves interact with smallscale random heterogeneities on a scale of micrometers, but often ignored as noises because of the contamination of boundary reflections from the side ends of a sample core. Numerical simulations with accurate absorbing boundary can provide insight into the effect of boundary reflections on coda waves in laboratory experiments. The simulation of wave propagation in digital and heterogeneous porous cores really challenges numerical techniques by digital image of poroelastic properties, numerical dispersion at high frequency and strong heterogeneity, and accurate absorbing boundary schemes at grazing incidence. To overcome these difficulties, we present a staggered-grid high-order finite-difference (FD) method of Biot's poroelastic equations, with an arbitrary even-order (2L) accuracy to simulate ultrasonic wave propagation in digital porous cores with strong heterogeneity. An unsplit convolutional perfectly matched layer (CPML) absorbing boundary, which improves conventional PML methods at grazing incidence with less memory and better computational efficiency, is employed in the simulation to investigate the influence of boundary reflections on ultra- sonic coda waves. Numerical experiments with saturated poroelastic media demonstrate that the 2L FD scheme with the CPML for ultrasonic wave propagation significantly improves stability conditions at strong heterogeneity and absorbing performance at grazing incidence. The boundary reflections from the artificial boundary surrounding the digital core decay fast with the increase of CPML thick- nesses, almost disappearing at the CPML thickness of 15 grids. Comparisons of the resulting ultrasonic coda Qsc values between the numerical and experimental ultrasonic S waveforms for a cylindrical rock sample demonstrate that the boundary reflection may contribute around one-third of the ultrasonic coda attenuation observed in laboratory experiments.展开更多
The paper presents the results of comprehensive studies of filtration and capacitance properties of highly porous reservoir rocks of the aquifer of an underground gas storage facility.The geomechanical part of the res...The paper presents the results of comprehensive studies of filtration and capacitance properties of highly porous reservoir rocks of the aquifer of an underground gas storage facility.The geomechanical part of the research included studying the dependence of rock permeability on the stress-strain state in the vicinity of the wells,and physical modeling of the implementation of the method of increasing the permeability of the wellbore zone-the method of directional unloading of the reservoir.The digital part of the research included computed tomography(CT)-based computer analysis of the internal structure,pore space characteristics,and filtration properties before and after the tests.According to the results of physical modeling of deformation and filtration processes,it is found that the permeability of rocks before fracture depends on the stress-strain state insignificantly,and this influence is reversible.However,when downhole pressure reaches 7-8 MPa,macrocracks in the rock begin to grow,accompanied by irreversible permeability increase.Porosity,geodesic tortuosity and permeability values were obtained based on digital studies and numerical modeling.A weak degree of transversal anisotropy of the filtration properties of rocks was detected.Based on the analysis of pore size distribution,pressure field and flow velocities,high homogeneity and connectivity of the rock pore space is shown.The absence of pronounced changes in pore space characteristics and pore permeability after non-uniform triaxial loading rocks was shown.On the basis of geometrical analysis of pore space,the reasons for weak permeability anisotropy were identified.The filtration-capacitance properties obtained from the digital analysis showed very good agreement with the results of field and laboratory measurements.The physical modeling has confirmed the efficiency of application of the directional unloading method for the reservoir under study.The necessary parameters of its application were calculated:bottomhole geometry,stage of operation,stresses and pressure drawdown value.展开更多
In the process of in situ leaching of uranium,the microstructure controls and influences the flow distribution,percolation characteristics,and reaction mechanism of lixivium in the pores of reservoir rocks and directl...In the process of in situ leaching of uranium,the microstructure controls and influences the flow distribution,percolation characteristics,and reaction mechanism of lixivium in the pores of reservoir rocks and directly affects the leaching of useful components.In this study,the pore throat,pore size distribution,and mineral composition of low-permeability uranium-bearing sandstone were quantitatively analyzed by high pressure mercury injection,nuclear magnetic resonance,X-ray diffraction,and wavelength-dispersive X-ray fluorescence.The distribution characteristics of pores and minerals in the samples were qualitatively analyzed using energy-dispersive scanning electron microscopy and multi-resolution CT images.Image registration with the landmarks algorithm provided by FEI Avizo was used to accurately match the CT images with different resolutions.The multi-scale and multi-mineral digital core model of low-permeability uranium-bearing sandstone is reconstructed through pore segmentation and mineral segmentation of fusion core scanning images.The results show that the pore structure of low-permeability uranium-bearing sandstone is complex and has multi-scale and multi-crossing characteristics.The intergranular pores determine the main seepage channel in the pore space,and the secondary pores have poor connectivity with other pores.Pyrite and coffinite are isolated from the connected pores and surrounded by a large number of clay minerals and ankerite cements,which increases the difficulty of uranium leaching.Clays and a large amount of ankerite cement are filled in the primary and secondary pores and pore throats of the low-permeability uraniumbearing sandstone,which significantly reduces the porosity of the movable fluid and results in low overall permeability of the cores.The multi-scale and multi-mineral digital core proposed in this study provides a basis for characterizing macroscopic and microscopic pore-throat structures and mineral distributions of low-permeability uranium-bearing sandstone and can better understand the seepage characteristics.展开更多
The electrophysical property of saturated rocks is very important for reservoir identification and evaluation. In this paper, the lattice Boltzmann method (LBM) was used to study the electrophysical property of rock...The electrophysical property of saturated rocks is very important for reservoir identification and evaluation. In this paper, the lattice Boltzmann method (LBM) was used to study the electrophysical property of rock saturated with fluid because of its advantages over conventional numerical approaches in handling complex pore geometry and boundary conditions. The digital core model was constructed through the accumulation of matrix grains based on their radius distribution obtained by the measurements of core samples. The flow of electrical current through the core model saturated with oil and water was simulated on the mesoscopic scale to reveal the non-Archie relationship between resistivity index and water saturation (I-Sw). The results from LBM simulation and laboratory measurements demonstrated that the I-Sw relation in the range of low water saturation was generally not a straight line in the log-log coordinates as described by the Archie equation. We thus developed a new equation based on numerical simulation and physical experiments. This new equation was used to fit the data from laboratory core measurements and previously published data. Determination of fluid saturation and reservoir evaluation could be significantly improved by using the new equation.展开更多
The targeted reservoir,which is referred as the first member of Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin,NE China,is characterized by the enrichment of clay and lamellation fractures.Aiming at the...The targeted reservoir,which is referred as the first member of Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin,NE China,is characterized by the enrichment of clay and lamellation fractures.Aiming at the technical challenge of determining oil saturation of such reservoir,nano-pores were accurately described and located through focused ion beam scanning electron microscopy and quantitative evaluation of minerals by scanning electron microscopy based on Simandoux model,to construct a 4D digital core frame.Electrical parameters of the shale reservoir were determined by finite element simulation,and the oil saturation calculation method suitable for shale was proposed.Comparison between the results from this method with that from real core test and 2D nuclear magnetic log shows that the absolute errors meet the requirements of the current reserve specification in China for clay-rich shale reservoir.Comparison analysis of multiple wells shows that the oil saturation values calculated by this method of several points vertically in single wells and multiple wells on the plane are in agreement with the test results of core samples and the regional deposition pattern,proving the accuracy and applicability of the method model.展开更多
The propagation of wormhole is vital important for matrix acidizing and acid fracturing in carbonate reservoirs.While the formation of acid dissolved wormhole is derived from heterogeneous physical and chemical transp...The propagation of wormhole is vital important for matrix acidizing and acid fracturing in carbonate reservoirs.While the formation of acid dissolved wormhole is derived from heterogeneous physical and chemical transportations and reactions.Alveolate dissolved pores,krast caves,and natural fissures are the major reservoir spaces for the Sinian dolomite formation in the Anyue gas field of the Sichuan Basin.There were four categories of formation,which are matrix dominated,inter-breccia dissolved pore dominated,dissolved pore and cave dominated,and fissure and cave dominated,based on the development intensity and connectedness of caves and fissures.The caves and fissures make the wormhole formation and propagation particularly complicated.Firstly,the 3-D topological structure of dissolved pores,vugs,fissures and throats inside cores is quantitatively scanned by CT imaging technology for its feature of vivid and damage-free.Secondly,3-D patterns of wormhole are obtained with CT scanning after core flooding by acid.Additionally,the porethroat network model is reconstructed with digital cores technology.Then,the size and ratio of pore and throat before and after core flooding by acid is analyzed and the absolute permeability of pore scale flow is numerically simulated to understand the fundamental influence of pores and vugs distribution and connectedness on wormhole propagation.Lastly,the wormhole pattern gained by CT scanning and simulating with two-scale model is compared.Meanwhile,the corrected two-scale model is utilized to simulate the wormhole propagation for matrix acidizing and acid fracturing of Sinian fractured-vuggy dolomite in Anyue gas field,Sichuan Basin.The optimized injection rate and volume were in agreement with the characteristic matrix acidizing operating curve,which indicates that the two-scale model was suitable for matrix acidizing optimization design of such formations.In addition,the simulated acid etched fracture length with considering the dynamic wormhole leakoff was consistent with the well testing interpreted result.展开更多
Unconventional reservoirs are normally characterized by dual porous media, which has both multi-scalepore and fracture structures, such as low permeability or tight oil reservoirs. The seepage characteristicsof such r...Unconventional reservoirs are normally characterized by dual porous media, which has both multi-scalepore and fracture structures, such as low permeability or tight oil reservoirs. The seepage characteristicsof such reservoirs is mainly determined by micro-fractures, but conventional laboratory experimentalmethods are difficult to measure it, which is attribute to the dynamic cracking of these micro-fractures.The emerging digital core technology in recent years can solve this problem by developing an accuratepore network model and a rational simulation approach. In this study, a novel pore-fracture dualnetwork model was established based on percolation theory. Fluid flow in the pore of two scales, microfracture and matrix pore, were considered, also with the impact of micro-fracture opening and closingduring flow. Some seepage characteristic parameters, such as fluid saturations, capillary pressure, relative permeabilities, displacement efficiency in different flow stage, can be predicted by proposedcalculating method. Through these work, seepage characteristics of dual porous media can be achieved.展开更多
基金sponsored by NSFC(Grant No.40574030)CNPC research project(Grant No.06A30102)
文摘In this paper, we obtained three dimensional digital cores using X-ray CT to describe the rock microstructure and applied the open morphology algorithm to simulate oil and formation water distribution in the pore space at different water saturations during the oil-displacing water flood process. The resistivity, formation factor, and resistivity index of rocks were calculated using the finite element method (FEM) and we studied the effect of rock wettability on electrical properties. The numerical simulation results indicate that the simulated formation factor and resistivity index of the water wet rock agrees well with experiments over the whole range of water saturation and extends the traditional resistivity experiment. The rock wettablilty has a large influence on the rock resistivity index. The resistivity and saturation exponent of oil wet rock are obviously larger than three of water wet rock.
基金supported by the Chinese Academy of Sciences Strategic Leading Science and Technology projects(Grant No.XDB10010400)the China Postdoctoral Science Foundation(Grant No.2015M570142)
文摘The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.
基金sponsored by NSFC(Grant No.40574030)CNPC Research Project(Grant No.06A30102)
文摘A 3-D digital core describes the pore space microstructure of rocks. An X-ray micro CT scan is the most accurate and direct but costly method to obtain a 3-D digital core. In this study, we propose a hybrid method which combines sedimentation simulation and simulated annealing (SA) method to generate 3-D digital cores based on 2-D images of rocks. The method starts with the sedimentation simulation to build a 3-D digital core, which is the initial configuration for the SA method. We update the initial digital core using the SA method to match the auto-correlation function of the 2-D rock image and eventually build the final 3-D digital core. Compared with the typical SA method, the hybrid method has significantly reduced the computation time. Local porosity theory is applied to quantitatively compare the reconstructed 3-D digital cores with the X-ray micro CT 3-D images. The results indicate that the 3-D digital cores reconstructed by the hybrid method have homogeneity and geometric connectivity similar to those of the X-ray micro CT image. The formation factors and permeabilities of the reconstructed 3-D digital cores are estimated using the finite element method (FEM) and lattice Boltzmann method (LBM), respectively. The simulated results are in good agreement with the experimental measurements. Comparison of the simulation results suggests that the digital cores reconstructed by the hybrid method more closely reflect the true transport properties than the typical SA method alone.
基金the Natural Science Foundation of China(Nos.51874188,51927807,41941018 and 51704125)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1717)+1 种基金the Major Scientific and Technological Innovation Project of Shandong Province,China(No.2019SDZY04)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program(No.2019KJG013).
文摘The rock uniaxial compressive strength(UCS)is the basic parameter for support designs in underground engineering.In particular,the rock UCS should be obtained rapidly for underground engineering with complex geological conditions,such as soft rock,fracture areas,and high stress,to adjust the excavation and support plan and ensure construction safety.To solve the problem of obtaining real-time rock UCS at engineering sites,a rock UCS forecast idea is proposed using digital core drilling.The digital core drilling tests and uniaxial compression tests are performed based on the developed rock mass digital drilling system.The results indicate that the drilling parameters are highly responsive to the rock UCS.Based on the cutting and fracture characteristics of the rock digital core drilling,the mechanical analysis of rock cutting provides the digital core drilling strength,and a quantitative relationship model(CDP-UCS model)for the digital core drilling parameters and rock UCS is established.Thus,the digital core drilling-based rock UCS forecast method is proposed to provide a theoretical basis for continuous and quick testing of the surrounding rock UCS.
基金supported by the National Natural Science Foundation of China Research(Nos.41574122 and 41374124)National Science and Technology major Project(No.2016ZX05006002-004)。
文摘The conventional digital core models are usually small in size and have difficulty in representing the complex structures of heterogeneous rocks;Therefore,the parameters of simulated rock physics are difficult to be referenced.In this study,we propose a feasible simulation method for obtaining multi-scale and multi-component digital cores based on three types of sandstone samples.In the proposed method,the plug and subplug samples are scanned via micro-computed tomography at different resolutions.Furthermore,the images are precisely registered using the proposed hybrid image registration method.In case of high-resolution images,the traditional segmentation method is used to segment the cores into pores and minerals.Subsequently,we established the relations between the gray values and the porosity/mineral content in case of the low-resolution images based on the registered domains and the relation curves were applied to the segmentation of the low-resolution images.The core images constitute the multi-scale and multi-component digital core models after segmentation.Further,the elastic properties of the three samples were simulated at both fine and coarse scales based on the multi-scale and multi-component digital core models,and four component models were considered.The results show that the multi-scale and multi-component digital core models can overcome the representative limits of the conventional digital core models and accurately characterize pores and minerals at different scales.The numerical results of the elastic modulus are more representative at large scales,and considerably reliable results can be obtained by appropriately considering the minerals.
基金supported by Open Fund (PLN1506) of State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationChinese National Natural Science Foundation (41502287)+2 种基金Chongqing Basic and Frontier Research Projects (CSTC2015JCYJBX0120)Chongqing City Social Undertakings and Livelihood Protection Science and Technology Innovation Special Project (CSTC2017SHMSA120001)Chongqing Land Bureau Science and Technology Planning Project (CQGT-KJ-2017026,CQGTKJ-2015044,CQGT-KJ-2015018, CQGT-KJ-2014040)
文摘Diffusion is an important mass transfer mode of tight sandstone gas. Since nano-pores are extensively developed in the interior of tight sandstone, a considerable body of research indicates that the type of diffusion is mainly molecular diffusion based on Fick's law. However, accurate modeling and understanding the physics of gas transport phenomena in nanoporous media is still a challenge for researchers and traditional investigation(analytical and experimental methods) have many limitations in studying the generic behavior. In this paper, we used Nano-CT to observe the pore structures of samples of the tight sandstone of western of Sichuan. Combined with advanced image processing technology, threedimensional distributions of the nanometer-sized pores were reconstructed and a tight sandstone digital core model was built, as well the pore structure parameters were analyzed quantitatively. Based on the digital core model, the diffusion process of methane molecules from a higher concentration area to a lower concentration area was simulated by a finite volume method. Finally, the reservoir's concentration evolution was visualized and the intrinsic molecular diffusivity tensor which reflects the diffusion capabilities of this rock was calculated. Through comparisons, we found that our calculated result was in good agreement with other empirical results. This study provides a new research method for tight sandstone digital rock physics. It is a foundation for future tight sandstone gas percolation theory and numerical simulation research.
基金financially supported by the National Natural Science Foundation of China(Grant No.41972138)the Technology Major Project of China(Grant No.ZD2019-183007,2016ZX05002-002)。
文摘Microscopic seepage characteristics are critical for the evaluation of tight sandstone reservoirs.In this study,a digital core approach integrating microscopic seepage simulation and CT scanning was developed to characterize microscopic seepage and fracture effectiveness(the ratio of micro-fractures that contributes to fluid flow)of tight sandstones.Numerical simulations were carried out for characterizations of tight sandstones.The results show that the axial permeability of the investigated cylindrical tight sandstone from Junggar Basin in China is 0.460μm~2,while the radial permeability is 0.3723μm~2,and the axial and radial effective fracture ratios are 0.4387 and 0.4806,respectively,indicating that cracks are not fully developed and the connectivity between micro-cracks is poor.Directional permeability that is difficult to measure by laboratory experiments can be obtained readily using the proposed method in this paper.The results provide important information for improving the exploration and development of tight sandstone reservoirs.
基金We thank Patrick Corbett of Herriot–Watt University for providing the CT scans of the samples.The investigation is financially supported by the National Science&Technology Major Special Project(No.2016ZX05006-002)China Postdoctoral Science Foundation Funded Project(No.2018M632716)+1 种基金Shandong Province Post Doctor Innovative Project Special Fund,Open Project Fund of the National and Local Joint Engineering Research Center of Shale Gas Exploration and Development(No.YiqKTKFGJDFLHGCYJZX444-201901)Chongqing Basic Research and Frontier Exploration Project(No.cstc2018jcyjax0503).
文摘Digital core models reconstructed using X-ray tomography(X-CT)enable the quantitative characterization of the pore structure in three dimensions(3D)and the numerical simulation of petrophysics.When the X-CT images accurately reflect the micro structures of core samples,the greyscale threshold in the image segmentation determines the accuracy of digital cores and the simulated petrophysical properties.Therefore,it is vital to investigate the comparison parameter for determining the key greyscale threshold and the criterion to describe the accuracy of the segmentation.Representative coquina digital core models from X-CT are used in this work to study the impact of grayscale threshold on the porosity,pore percolation,connectivity and electrical resistivity of the pore scale model and these simulations are calculated by Minkowski functions,component labeling and fi nite element method,respectively,to quantify the pore structure and simulate electrical resistivity.Results showed that the simulated physical properties of the digital cores,varied with the gradual increase of the greyscale threshold.Among the four parameters related to the threshold,the porosity was most sensitive and chose as the comparison parameter to judge the accuracy of the greyscale threshold.The variations of the threshold change the micro pore structures,and then the electrical resistivity.When the porosity of the digital core model is close to the experimental porosity,the simulated porosity exponent matches the experimental porosity exponents well.The good agreement proved that the porosity is the critical comparison parameter to describe the accuracy of image segmentation.The criterion is that the porosity of the digital core after segmentation should be close to the experimental porosity.
基金the National Natural Science Foundation of China(No.41274129)Chuan Qing Drilling Engineering Company's Scientific Research Project:Seismic detection technology and application of complex carbonate reservoir in Sulige Majiagou Formation and the 2018 Central Supporting Local Co-construction Fund(No.80000-18Z0140504)the Construction and Development of Universities in 2019-Joint Support for Geophysics(Double First-Class center,80000-19Z0204)。
文摘In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for a fully convolutional neural networkmodel. This model is used to reconstruct the three-dimensional (3D) digital core of Bereasandstone based on a small number of CT images. The Hamming distance together with theMinkowski functions for porosity, average volume specifi c surface area, average curvature,and connectivity of both the real core and the digital reconstruction are used to evaluate theaccuracy of the proposed method. The results show that the reconstruction achieved relativeerrors of 6.26%, 1.40%, 6.06%, and 4.91% for the four Minkowski functions and a Hammingdistance of 0.04479. This demonstrates that the proposed method can not only reconstructthe physical properties of real sandstone but can also restore the real characteristics of poredistribution in sandstone, is the ability to which is a new way to characterize the internalmicrostructure of rocks.
基金Supported by Project of the National Natural Science Foundation of China (No. 42072323)
文摘Altered igneous reservoirs have low porosity and permeability,compact structure and certain heterogeneity.A simple digital core with certain generality and multi-parameter constraints can be con-structed to characterize the microscopic pore structure and mineral composition.In this paper,based on core X-ray,CT images and whole-rock mineral analysis,threshold segmentation of mass content and grayscale distribution of various minerals in different lithologies of igneous rocks in the buried hill of Huizhou depression is carried out to construct digital core of altered igneous rocks.The results show that after converting the mineral mass content into volume content,the minerals of altered igneous rocks in Huizhou depression can be classified into components.According to the range of grayscale value,components can be divided into six parts.Due to the difference of the content of components in different lithologies of igneous rocks,differentiated grayscale threshold segmentation is needed to obtain the digital core for a single lithology.The final digital core generation process includes two steps:building a single component digital core,and stacking and combining.This kind of universal digital core model can support the subsequent pore scale numerical simulation and comprehensive rock physics research.
基金supported by the National Natural Science Foundation of China(Grant No.51234007,51404291)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1294)Introducing Talents of Discipline to Universities(Grant No.B08028)
文摘Two-phase flow in two digital cores is simulated by the color-gradient lattice Boltzmann method.This model can be applied totwo-phase flow with high-density ratio(on order of 1000).The first digital core is an artificial sandstone core,and itsthree-dimensional gray model is obtained by Micro-CT scanning.The gray scale images are segmented into discrete phases(solid particles and pore space) by the Otsu algorithm.The second one is a digital core of shale,which is reconstructed usingMarkov Chain Monte Carlo method with segmented SEM scanning image as input.The wettability of solid wall and relativepermeability of a cylindrical tube are simulated to verify the model.In the simulations of liquid and gas two phase flow in digital cores,density ratios of 100,200,500 and 1000 between liquid and gas are chosen.Based on the gas distribution in the digital core at different times,it is found that the fingering phenomenon is more salient at high density ratio.With the density ratioincreasing,the displacement efficiency decreases.Besides,due to numerous small pores in the shale,the displacement efficiency is over 20% less than that in the artificial sandstone and the difference is even about 30% when density ratio is greaterthan 500.As the density ratio increases,the gas saturation decreases in big pores,and even reaches zero in some small pores orbig pores with small throats.Residual liquid mainly distributes in the small pores and the edge of big pores due to the wettability of liquid.Liquid recovery can be enhanced effectively by decreasing its viscosity.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,the National Natural Sciences Foundation and China Postdoctoral Science Foundation(Grant Nos.XDA14010303,XDB10010400,41804134,2018M640176).
文摘Effective medium methods for the attribution of micro-structures to macro elastic properties of shales are important for the prediction of sweet spots in the shale-gas production.With X-ray micro-computed tomography(XMCT),the micro-structures of shale core samples from Longmaxi Formation are visualized and characterized by 3D digital images.As an efficient alternative to conventional effective medium methods for estimating elastic properties,we propose a consistent workflow of lattice spring modeling(LSM)to emulate the digital cores using three types of lattices.Particular attention is paid to investigate the effective Young’s moduli,Poisson’s ratios,and preferred orientations,by uniaxial compression tests along two directions.Within elastic deformation,the impact of lattice arrangements on the anisotropy is even more than those of stress disturbances and micro-structural features.Compared with analytical approximations and theoretical predictions,the LSM numerical scheme shows general applicability for heterogeneous porous rocks.
基金supported by the National Natural Science Foundation of China (40925013)the Strategic Leading Science and Technology Programme (Class B) of the Chinese Academy of Sciences (Grant No.XDB10010400)the China National Major Science and Technology Project (2011ZX05023-005004)
文摘Scattering attenuation in short wavelengths has long been interesting to geophysicists. Ultrasonic coda waves, observed as the tail portion of ultrasonic wavetrains in laboratory ultrasonic measurements, are important for such studies where ultrasonic waves interact with smallscale random heterogeneities on a scale of micrometers, but often ignored as noises because of the contamination of boundary reflections from the side ends of a sample core. Numerical simulations with accurate absorbing boundary can provide insight into the effect of boundary reflections on coda waves in laboratory experiments. The simulation of wave propagation in digital and heterogeneous porous cores really challenges numerical techniques by digital image of poroelastic properties, numerical dispersion at high frequency and strong heterogeneity, and accurate absorbing boundary schemes at grazing incidence. To overcome these difficulties, we present a staggered-grid high-order finite-difference (FD) method of Biot's poroelastic equations, with an arbitrary even-order (2L) accuracy to simulate ultrasonic wave propagation in digital porous cores with strong heterogeneity. An unsplit convolutional perfectly matched layer (CPML) absorbing boundary, which improves conventional PML methods at grazing incidence with less memory and better computational efficiency, is employed in the simulation to investigate the influence of boundary reflections on ultra- sonic coda waves. Numerical experiments with saturated poroelastic media demonstrate that the 2L FD scheme with the CPML for ultrasonic wave propagation significantly improves stability conditions at strong heterogeneity and absorbing performance at grazing incidence. The boundary reflections from the artificial boundary surrounding the digital core decay fast with the increase of CPML thick- nesses, almost disappearing at the CPML thickness of 15 grids. Comparisons of the resulting ultrasonic coda Qsc values between the numerical and experimental ultrasonic S waveforms for a cylindrical rock sample demonstrate that the boundary reflection may contribute around one-third of the ultrasonic coda attenuation observed in laboratory experiments.
基金supported by the Russian Science Foundation(Grant No.22-11-00273).
文摘The paper presents the results of comprehensive studies of filtration and capacitance properties of highly porous reservoir rocks of the aquifer of an underground gas storage facility.The geomechanical part of the research included studying the dependence of rock permeability on the stress-strain state in the vicinity of the wells,and physical modeling of the implementation of the method of increasing the permeability of the wellbore zone-the method of directional unloading of the reservoir.The digital part of the research included computed tomography(CT)-based computer analysis of the internal structure,pore space characteristics,and filtration properties before and after the tests.According to the results of physical modeling of deformation and filtration processes,it is found that the permeability of rocks before fracture depends on the stress-strain state insignificantly,and this influence is reversible.However,when downhole pressure reaches 7-8 MPa,macrocracks in the rock begin to grow,accompanied by irreversible permeability increase.Porosity,geodesic tortuosity and permeability values were obtained based on digital studies and numerical modeling.A weak degree of transversal anisotropy of the filtration properties of rocks was detected.Based on the analysis of pore size distribution,pressure field and flow velocities,high homogeneity and connectivity of the rock pore space is shown.The absence of pronounced changes in pore space characteristics and pore permeability after non-uniform triaxial loading rocks was shown.On the basis of geometrical analysis of pore space,the reasons for weak permeability anisotropy were identified.The filtration-capacitance properties obtained from the digital analysis showed very good agreement with the results of field and laboratory measurements.The physical modeling has confirmed the efficiency of application of the directional unloading method for the reservoir under study.The necessary parameters of its application were calculated:bottomhole geometry,stage of operation,stresses and pressure drawdown value.
基金This work was supported by the National Natural Science Foundation of China(No.11775107)the Key Projects of Education Department of Hunan Province of China(No.16A184).
文摘In the process of in situ leaching of uranium,the microstructure controls and influences the flow distribution,percolation characteristics,and reaction mechanism of lixivium in the pores of reservoir rocks and directly affects the leaching of useful components.In this study,the pore throat,pore size distribution,and mineral composition of low-permeability uranium-bearing sandstone were quantitatively analyzed by high pressure mercury injection,nuclear magnetic resonance,X-ray diffraction,and wavelength-dispersive X-ray fluorescence.The distribution characteristics of pores and minerals in the samples were qualitatively analyzed using energy-dispersive scanning electron microscopy and multi-resolution CT images.Image registration with the landmarks algorithm provided by FEI Avizo was used to accurately match the CT images with different resolutions.The multi-scale and multi-mineral digital core model of low-permeability uranium-bearing sandstone is reconstructed through pore segmentation and mineral segmentation of fusion core scanning images.The results show that the pore structure of low-permeability uranium-bearing sandstone is complex and has multi-scale and multi-crossing characteristics.The intergranular pores determine the main seepage channel in the pore space,and the secondary pores have poor connectivity with other pores.Pyrite and coffinite are isolated from the connected pores and surrounded by a large number of clay minerals and ankerite cements,which increases the difficulty of uranium leaching.Clays and a large amount of ankerite cement are filled in the primary and secondary pores and pore throats of the low-permeability uraniumbearing sandstone,which significantly reduces the porosity of the movable fluid and results in low overall permeability of the cores.The multi-scale and multi-mineral digital core proposed in this study provides a basis for characterizing macroscopic and microscopic pore-throat structures and mineral distributions of low-permeability uranium-bearing sandstone and can better understand the seepage characteristics.
基金sponsored by the project No.50404001 from the National Natural Science Foundation of Chinathe National Key Fundamental Research & Development Project(Grant No.2007CB209601)+1 种基金the China National PetroleumCorporation Fundamental Research Program (Grant No.06A30102)the China Postdoctoral Science Foundation(Project No.2004035350)
文摘The electrophysical property of saturated rocks is very important for reservoir identification and evaluation. In this paper, the lattice Boltzmann method (LBM) was used to study the electrophysical property of rock saturated with fluid because of its advantages over conventional numerical approaches in handling complex pore geometry and boundary conditions. The digital core model was constructed through the accumulation of matrix grains based on their radius distribution obtained by the measurements of core samples. The flow of electrical current through the core model saturated with oil and water was simulated on the mesoscopic scale to reveal the non-Archie relationship between resistivity index and water saturation (I-Sw). The results from LBM simulation and laboratory measurements demonstrated that the I-Sw relation in the range of low water saturation was generally not a straight line in the log-log coordinates as described by the Archie equation. We thus developed a new equation based on numerical simulation and physical experiments. This new equation was used to fit the data from laboratory core measurements and previously published data. Determination of fluid saturation and reservoir evaluation could be significantly improved by using the new equation.
基金Supported by the PetroChina"Fourteenth Five-Year Plan"Prospective Basic Technology Research Project(2021DJ4002)PetroChina Major Oil and Gas Project(2021ZZ10-01).
文摘The targeted reservoir,which is referred as the first member of Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin,NE China,is characterized by the enrichment of clay and lamellation fractures.Aiming at the technical challenge of determining oil saturation of such reservoir,nano-pores were accurately described and located through focused ion beam scanning electron microscopy and quantitative evaluation of minerals by scanning electron microscopy based on Simandoux model,to construct a 4D digital core frame.Electrical parameters of the shale reservoir were determined by finite element simulation,and the oil saturation calculation method suitable for shale was proposed.Comparison between the results from this method with that from real core test and 2D nuclear magnetic log shows that the absolute errors meet the requirements of the current reserve specification in China for clay-rich shale reservoir.Comparison analysis of multiple wells shows that the oil saturation values calculated by this method of several points vertically in single wells and multiple wells on the plane are in agreement with the test results of core samples and the regional deposition pattern,proving the accuracy and applicability of the method model.
基金The authors are grateful for the research support of the Postdoctoral Program of Postdoctoral Work Centre,Southwest Oil&Gas Field Company(No.20150304-08).
文摘The propagation of wormhole is vital important for matrix acidizing and acid fracturing in carbonate reservoirs.While the formation of acid dissolved wormhole is derived from heterogeneous physical and chemical transportations and reactions.Alveolate dissolved pores,krast caves,and natural fissures are the major reservoir spaces for the Sinian dolomite formation in the Anyue gas field of the Sichuan Basin.There were four categories of formation,which are matrix dominated,inter-breccia dissolved pore dominated,dissolved pore and cave dominated,and fissure and cave dominated,based on the development intensity and connectedness of caves and fissures.The caves and fissures make the wormhole formation and propagation particularly complicated.Firstly,the 3-D topological structure of dissolved pores,vugs,fissures and throats inside cores is quantitatively scanned by CT imaging technology for its feature of vivid and damage-free.Secondly,3-D patterns of wormhole are obtained with CT scanning after core flooding by acid.Additionally,the porethroat network model is reconstructed with digital cores technology.Then,the size and ratio of pore and throat before and after core flooding by acid is analyzed and the absolute permeability of pore scale flow is numerically simulated to understand the fundamental influence of pores and vugs distribution and connectedness on wormhole propagation.Lastly,the wormhole pattern gained by CT scanning and simulating with two-scale model is compared.Meanwhile,the corrected two-scale model is utilized to simulate the wormhole propagation for matrix acidizing and acid fracturing of Sinian fractured-vuggy dolomite in Anyue gas field,Sichuan Basin.The optimized injection rate and volume were in agreement with the characteristic matrix acidizing operating curve,which indicates that the two-scale model was suitable for matrix acidizing optimization design of such formations.In addition,the simulated acid etched fracture length with considering the dynamic wormhole leakoff was consistent with the well testing interpreted result.
基金The writers greatly appreciate the financial support of the Major Special Project of PetroChina Co Ltd.(2017E-0406)the National Science and Technology Major Project during the 13th Five-year Plan Period(2016ZX05010-00504).
文摘Unconventional reservoirs are normally characterized by dual porous media, which has both multi-scalepore and fracture structures, such as low permeability or tight oil reservoirs. The seepage characteristicsof such reservoirs is mainly determined by micro-fractures, but conventional laboratory experimentalmethods are difficult to measure it, which is attribute to the dynamic cracking of these micro-fractures.The emerging digital core technology in recent years can solve this problem by developing an accuratepore network model and a rational simulation approach. In this study, a novel pore-fracture dualnetwork model was established based on percolation theory. Fluid flow in the pore of two scales, microfracture and matrix pore, were considered, also with the impact of micro-fracture opening and closingduring flow. Some seepage characteristic parameters, such as fluid saturations, capillary pressure, relative permeabilities, displacement efficiency in different flow stage, can be predicted by proposedcalculating method. Through these work, seepage characteristics of dual porous media can be achieved.