Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this...Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.展开更多
In this paper, the optical/digital fringe multiplication (O/DFM) is realized in projection moiré using digital image processing (DIP). Both deformed grating and reference grating are captured using a CCD camera. ...In this paper, the optical/digital fringe multiplication (O/DFM) is realized in projection moiré using digital image processing (DIP). Both deformed grating and reference grating are captured using a CCD camera. The reference grating can also be produced using DIP. With the O/DFM, the pattern is multiplied with an image processing software, which is developed using MATLAB 6.5. Also with DIP, the phase shifting can become much simpler, and the automation can be adopted. The multiplied pattern is much thinner and easier to read, and sensitivity of measurement can be enhanced.展开更多
A dual-frequency digital Moiré measurement method(DFDM) is proposed for the three-dimensional(3D) shape measurement of an object.The high-and low-frequency fringes are modulated separately along orthogonal direct...A dual-frequency digital Moiré measurement method(DFDM) is proposed for the three-dimensional(3D) shape measurement of an object.The high-and low-frequency fringes are modulated separately along orthogonal direction using different carrier frequencies before being projected onto the measured object.After collecting and demodulating the composite fringe,the digital π phase shift is used to remove the DC component of the demodulated fringes,resulting in high-precision Moiré fringes for calculating the wrapped phase.The unwrapping of the high-frequency wrapped phase is guided by the low-frequency phase to further realistically reconstruct the surface of the measured object.When compared with existing single-shot digital Moiré profilometry,DFDM effectively removes the DC component of the fringe and calculates the phase more accurately.展开更多
In this study, a displacement measurement method based on digital moiré fringe is described and experimentally demonstrated. The method is formed by only one grating with a constant pitch. First, the magnified gr...In this study, a displacement measurement method based on digital moiré fringe is described and experimentally demonstrated. The method is formed by only one grating with a constant pitch. First, the magnified grating image is received by an imaging array and is sent to a computer. Then, the digital moiré fringes are generated by overlaying the grating image with its mirrored one. Finally, a specifically designed algorithm is used to obtain the fringes' phase difference before and after movement and calculate the displacement. This method has the effects of amplifying displacement and averaging the grating lines error, the same as the traditional moiré technique using two pieces of gratings. At the same time, the proposed system is much easier to assemble and the measurement resolution can be set more flexibly. One displacement measuring system based on this method was built up. Experiment results show that its measurement errors are less than 0.3 μm and less than 0.12 μm at the resolutions of 0.1 μm and 0.03 μm, respectively.展开更多
Human expression rapid reconstruction has many potential applications in entertainment and social security. In this work, a rapid human expression measurement system based on a digital fringe projection and phase-shif...Human expression rapid reconstruction has many potential applications in entertainment and social security. In this work, a rapid human expression measurement system based on a digital fringe projection and phase-shift technique is developed. The measurement system consists of a digital light processing (DLP) projector and a high-speed change-coupled device (CCD) camera. The DLP projector is used to project computer-generated fringe patterns onto the human face, and the high-speed CCD camera synchronized with the projector acquires the fringe images at a frame rate of 30 frames/s. Based on a three-step phase-shifting method and an accurate phase-height mapping algorithm, each frame of the 3-D human expression can be reconstructed. The principle of the proposed method is described and some experimental results are presented to demonstrate its performance. The experiment results show that the measurement system can reconstruct accurate 3-D human expression. An obvious merit of this method is that it can reconstruct the 3-D human expression in a very short time and it is not sensitive to the movement of the face during the measurement processing.展开更多
基金the financial support provided by the National Natural Science Foundation of China(11472267 and 11372182)the National Basic Research Program of China(2012CB937504)
文摘Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.
文摘In this paper, the optical/digital fringe multiplication (O/DFM) is realized in projection moiré using digital image processing (DIP). Both deformed grating and reference grating are captured using a CCD camera. The reference grating can also be produced using DIP. With the O/DFM, the pattern is multiplied with an image processing software, which is developed using MATLAB 6.5. Also with DIP, the phase shifting can become much simpler, and the automation can be adopted. The multiplied pattern is much thinner and easier to read, and sensitivity of measurement can be enhanced.
文摘A dual-frequency digital Moiré measurement method(DFDM) is proposed for the three-dimensional(3D) shape measurement of an object.The high-and low-frequency fringes are modulated separately along orthogonal direction using different carrier frequencies before being projected onto the measured object.After collecting and demodulating the composite fringe,the digital π phase shift is used to remove the DC component of the demodulated fringes,resulting in high-precision Moiré fringes for calculating the wrapped phase.The unwrapping of the high-frequency wrapped phase is guided by the low-frequency phase to further realistically reconstruct the surface of the measured object.When compared with existing single-shot digital Moiré profilometry,DFDM effectively removes the DC component of the fringe and calculates the phase more accurately.
基金Project supported by the National Natural Science Foundation of China(No.61205159)
文摘In this study, a displacement measurement method based on digital moiré fringe is described and experimentally demonstrated. The method is formed by only one grating with a constant pitch. First, the magnified grating image is received by an imaging array and is sent to a computer. Then, the digital moiré fringes are generated by overlaying the grating image with its mirrored one. Finally, a specifically designed algorithm is used to obtain the fringes' phase difference before and after movement and calculate the displacement. This method has the effects of amplifying displacement and averaging the grating lines error, the same as the traditional moiré technique using two pieces of gratings. At the same time, the proposed system is much easier to assemble and the measurement resolution can be set more flexibly. One displacement measuring system based on this method was built up. Experiment results show that its measurement errors are less than 0.3 μm and less than 0.12 μm at the resolutions of 0.1 μm and 0.03 μm, respectively.
基金Supported by the Eleventh Five-Year Pre-Research Project of China
文摘Human expression rapid reconstruction has many potential applications in entertainment and social security. In this work, a rapid human expression measurement system based on a digital fringe projection and phase-shift technique is developed. The measurement system consists of a digital light processing (DLP) projector and a high-speed change-coupled device (CCD) camera. The DLP projector is used to project computer-generated fringe patterns onto the human face, and the high-speed CCD camera synchronized with the projector acquires the fringe images at a frame rate of 30 frames/s. Based on a three-step phase-shifting method and an accurate phase-height mapping algorithm, each frame of the 3-D human expression can be reconstructed. The principle of the proposed method is described and some experimental results are presented to demonstrate its performance. The experiment results show that the measurement system can reconstruct accurate 3-D human expression. An obvious merit of this method is that it can reconstruct the 3-D human expression in a very short time and it is not sensitive to the movement of the face during the measurement processing.