We studied the molecular mechanism of the quality traits of wood formation in larch.We used the immature latewood cells of two Japanese larch(Larix kaempferi)clones with significant differences in density and in micro...We studied the molecular mechanism of the quality traits of wood formation in larch.We used the immature latewood cells of two Japanese larch(Larix kaempferi)clones with significant differences in density and in microfibrillar angle(MFA)as materials to analyze their gene expression profiles.A total of 1735 differentially expressed genes were detected in immature latewood cells of the two clones,among which,971 were up-regulated and 764 were down-regulated.Digital gene expression profiling analysis revealed that genes encoding transcription factor members NAC66 and R2R3-MYB4,microtubule-associated protein,actin-related protein,cell wall protein members,arabinogalactan protein,Fasciclin-like arabinogalactan protein and glycine-rich protein,and several cell-wall-synthesis genes affected wood density and MFA by regulating latewood formation at transcriptional level.Our study results represent a basis for selection of quality traits and genetic improvement of larch wood.展开更多
基金supported by the Special Fund for Forest Scientific Research in the Public Welfare(201504104)the Fundamental Research Funds for the Central Non-profit Research Institution of CAF(CAFYBB2017ZA001)
文摘We studied the molecular mechanism of the quality traits of wood formation in larch.We used the immature latewood cells of two Japanese larch(Larix kaempferi)clones with significant differences in density and in microfibrillar angle(MFA)as materials to analyze their gene expression profiles.A total of 1735 differentially expressed genes were detected in immature latewood cells of the two clones,among which,971 were up-regulated and 764 were down-regulated.Digital gene expression profiling analysis revealed that genes encoding transcription factor members NAC66 and R2R3-MYB4,microtubule-associated protein,actin-related protein,cell wall protein members,arabinogalactan protein,Fasciclin-like arabinogalactan protein and glycine-rich protein,and several cell-wall-synthesis genes affected wood density and MFA by regulating latewood formation at transcriptional level.Our study results represent a basis for selection of quality traits and genetic improvement of larch wood.